Gross actinide preconcentration using phosphonate-based ligand and cloud point extraction

  • Charles Labrecque
  • Julien Légaré Lavergne
  • Dominic Larivière
Article
  • 202 Downloads

Abstract

A procedure for the effective separation and determination of the most abundant actinides relevant to the nuclear industry (U, Th, Np, Pu and Am) was developed based on cloud point extraction (CPE) using H2DEH[MDP] (P,P-di-(2-ethylhexyl) methanediphosphonic acid) as a ligand. The extractability of actinides with varying concentrations of nitric acid and hydrochloric acid were assessed. The robustness of the method was demonstrated for environmental matrices such as reference materials and spiked liquid samples for the quantification of the gross actinide content. This analytical strategy may replace traditional sample preparation techniques used in radiological methods for gross measurements of radioactivity, and may act as a rapid screening tool in emergency situations. The developed method is a greener alternative to common radiochemical sample preparation techniques such as co-precipitation or evaporation. The formation of a small-volume surfactant-rich phase containing the complexed actinides enables rapid, highly selective and great enrichment of the analytes in this phase. The proposed method shows good extraction and separation yield compared to existing methods, since the surfactant-rich phase is soluble in water and can therefore be redispersed quantitatively in a medium compatible with mass spectrometry while providing fast isolation of the actinide content. Separation of actinides can be achieved after by wet ashing of the surfactant-rich phase obtained by CPE if coupled to the proper radiochemical separation scheme.

Keywords

Cloud point extraction Actinides Alpha spectrometry ICP-MS Gross counting 

Supplementary material

10967_2015_4447_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (docx 1171 kb)

References

  1. 1.
    Kim G, Burnett WC, Horwitz EP (2000) Efficient preconcentration and separation of actinide elements from large soil and sediment samples. Anal Chem 72(20):4882–4887CrossRefGoogle Scholar
  2. 2.
    Bouvier-Capely C, Ritt J, Baglan N, Cossonnet C (2004) Potentialities of mass spectrometry (ICP-MS) for actinides determination in urine. Appl Radiat Isot 60(5):629–633CrossRefGoogle Scholar
  3. 3.
    Shi Y, Collins R, Broome C (2013) Determination of uranium, thorium and plutonium isotopes by ICP-MS. J Radioanal Nucl Chem 296(1):509–515CrossRefGoogle Scholar
  4. 4.
    Fraser MM, Beauchemin D (2001) Effect of concomitant elements on the distribution of ions in inductively coupled plasma mass spectrometry - part 2: polyatomic ions. Spectrochim Acta Part B 56(12):2479–2495CrossRefGoogle Scholar
  5. 5.
    Olivares JA, Houk RS (1986) Suppression of analyte signal by various concomitant salts in inductively coupled plasma mass-spectrometry. Anal Chem 58(1):20–25CrossRefGoogle Scholar
  6. 6.
    Qiao JX, Hou XL, Miro M, Roos P (2009) Determination of plutonium isotopes in waters and environmental solids: a review. Anal Chim Acta 652(1–2):66–84CrossRefGoogle Scholar
  7. 7.
    Croudace I, Warwick P, Taylor RN, Dee S (1998) Rapid procedure for plutonium and uranium determination in soils using a borate fusion followed by ion-exchange and extraction chromatography. Anal Chim Acta 371(2–3):217–225CrossRefGoogle Scholar
  8. 8.
    Ketterer ME, Hafer KM, Mietelski JW (2004) Resolving Chernobyl vs. global fallout contributions in soils from Poland using Plutonium atom ratios measured by inductively coupled plasma mass spectrometry. J Environ Radioact 73(2):183–201CrossRefGoogle Scholar
  9. 9.
    Truscott JB, Jones P, Fairman BE, Evans EH (2001) Determination of actinides in environmental and biological samples using high-performance chelation ion chromatography coupled to sector-field inductively coupled plasma mass spectrometry. J Chromatogr A 928(1):91–98CrossRefGoogle Scholar
  10. 10.
    Varga Z, Suranyi G, Vajda N, Stefanka Z (2007) Determination of plutonium and americium in environmental samples by inductively coupled plasma sector field mass spectrometry and alpha spectrometry. Microchem J 85(1):39–45CrossRefGoogle Scholar
  11. 11.
    Varga Z, Suranyi G, Vajda N, Stefanka Z (2007) Improved sample preparation method for environmental plutonium analysis by ICP-SFMS and alpha-spectrometry. J Radioanal Nucl Chem 274(1):87–94CrossRefGoogle Scholar
  12. 12.
    Pilvio R, Bickel M (2000) Actinoid separations by extraction chromatography. Appl Radiat Isot 53(1–2):273–277CrossRefGoogle Scholar
  13. 13.
    Vajda N, Kim C-K (2010) Determination of Am-241 isotope: a review of analytical methodology. J Radioanal Nucl Chem 284(2):341–366CrossRefGoogle Scholar
  14. 14.
    Burnett WC, Corbett DR, Schultz M, Horwitz EP, Chiarizia R, Dietz M, Thakkar A, Fern M (1997) Pre-concentration of actinide elements from soils and large volume water samples using extraction chromatography. J Radioanal Nucl Chem 226(1–2):121–127CrossRefGoogle Scholar
  15. 15.
    Navarro N, Rodriguez L, Alvarez A, Sancho C (2004) Rapid determination of alpha emitters using Actinide resin. Appl Radiat Isot 61(2–3):287–291CrossRefGoogle Scholar
  16. 16.
    Croudace IW, Warwick PE, Greenwood R (2006) A novel approach for the rapid decomposition of Actinide (TM) resin and its application to measurement of uranium and plutonium in natural waters. Anal Chim Acta 577(1):111–118CrossRefGoogle Scholar
  17. 17.
    Constantinou E, Pashalidis I (2010) Uranium determination in water samples by liquid scintillation counting after cloud point extraction. J Radioanal Nucl Chem 286(2):461–465CrossRefGoogle Scholar
  18. 18.
    Constantinou E, Pashalidis I (2011) Thorium determination in water samples by liquid scintillation counting after its separation by cloud point extraction. J Radioanal Nucl Chem 287(1):261–265CrossRefGoogle Scholar
  19. 19.
    Labrecque C, Potvin S, Whitty-Leveille L, Lariviere D (2013) Cloud point extraction of uranium using H2DEH[MDP] in acidic conditions. Talanta 107:284–291CrossRefGoogle Scholar
  20. 20.
    Madrakian T, Afkhami A, Mousavi A (2007) Spectrophotometric determination of trace amounts of uranium(VI) in water samples after mixed micelle-mediated extraction. Talanta 71(2):610–614CrossRefGoogle Scholar
  21. 21.
    Shemirani F, Kozani RR, Jamali MR, Assadi Y, Milani SMR (2005) Micelle-mediated extraction for direct spectrophotometric determination of trace uranium(VI) in water samples. Sep Sci Technol 40(12):2527–2537CrossRefGoogle Scholar
  22. 22.
    Mukherjee P, Padhan SK, Dash S, Patel S, Mishra BK (2011) Clouding behaviour in surfactant systems. Adv Colloid Interface Sci 162(1–2):59–79CrossRefGoogle Scholar
  23. 23.
    Pytlakowska K, Kozik V, Dabioch M (2013) Complex-forming organic ligands in cloud-point extraction of metal ions: a review. Talanta 110:202–228CrossRefGoogle Scholar
  24. 24.
    Mortada WI, Kenawy IM, Hassanien MM (2015) A cloud point extraction procedure for gallium, indium and thallium determination in liquid crystal display and sediment samples. Anal Methods. 7(5):2114–2120CrossRefGoogle Scholar
  25. 25.
    Bezerra MD, Arruda MAZ, Ferreira SLC (2005) Cloud point extraction as a procedure of separation and pre-concentration for metal determination using spectroanalytical techniques: a review. Appl Spectrosc Rev 40(4):269–299CrossRefGoogle Scholar
  26. 26.
    Labrecque C, Whitty-Leveille L, Lariviere D (2013) Cloud Point Extraction of Plutonium in Environmental Matrixes Coupled to ICPMS and alpha spectrometry in highly acidic conditions. Anal Chem 85(21):10549–10555CrossRefGoogle Scholar
  27. 27.
    Guerin N, Langevin MA, Nadeau K, Labrecque C, Gagne A, Lariviere D (2010) Determination of neptunium in environmental samples by extraction chromatography after valence adjustment. Appl Radiat Isot 68(12):2132–2139CrossRefGoogle Scholar
  28. 28.
    Stepinski DC, Herlinger AW (2002) A facile and selective high yield synthesis of symmetric dialkyl-substituted methylenebisphosphonic acids. Synth Commun 32(17):2683–2690CrossRefGoogle Scholar
  29. 29.
    McCurdy D, Lin Z, Inn KGW, Bell R, Wagner S, Efurd DW, Steiner R, Duffy C, Hamilton TF, Brown TA, Marchetti AA (2005) Second interlaboratory comparison study for the analysis of Pu-239 in synthetic urine at the mu Bq (similar to 100 aCi) level by mass spectrometry. J Radioanal Nucl Chem 263(2):447–455CrossRefGoogle Scholar
  30. 30.
    Kester DR, Duedall IW, Connors DN, Pytkowic RM (1967) Preparation of artificial seawater. Limnol Oceanogr 12(1):176–1000CrossRefGoogle Scholar
  31. 31.
    Maxwell SL, Jones VD (2009) Rapid determination of actinides in urine by inductively coupled plasma mass spectrometry and alpha spectrometry: a hybrid approach. Talanta 80(1):143–150CrossRefGoogle Scholar
  32. 32.
    Thakur P, Mulholland GP (2012) Determination of Np-237 in environmental and nuclear samples: a review of the analytical method. Appl Radiat Isot 70(8):1747–1778CrossRefGoogle Scholar
  33. 33.
    Labrecque C, Lariviere D (2014) Quantification of rare earth elements using cloud point extraction with diglycolamide and ICP-MS for environmental analysis. Anal Methods. 6(23):9291–9298CrossRefGoogle Scholar
  34. 34.
    Herlinger AW, Ferraro JR, Chiarizia R, Horwitz EP (1997) An investigation of P, P’-di(2-ethylhexyl) methanediphosphonic acid and some of its metal complexes. An investigation of P,P’-di(2-ethylhexyl) methanediphosphonic acid and some of its metal complexes. Polyhedron 16(11):1843–1854CrossRefGoogle Scholar
  35. 35.
    Chiarizia R, Horwitz EP, Rickert PG, Herlinger AW (1996) Metal extraction by alkyl substituted diphosphonic acids. 1. P, P’-di(2-ethylhexyl) methanediphosphonic acid. Solvent Extr Ion Exch 14(5):773–792CrossRefGoogle Scholar
  36. 36.
    Chiarizia R, Horwitz EP, Gatrone RC, Alexandratos SD, Trochimczuk AQ, Crick DW (1993) Uptake of metal-ions by a new chelating ion-exchange resin 2 Acid dependencies of transition and posttransition metal-ions. Solvent Extr Ion Exch 11(5):967–985CrossRefGoogle Scholar
  37. 37.
    Koshy L, Saiyad AH, Rakshit AK (1996) The effects of various foreign substances on the cloud point of Triton X 100 and Triton X 114. Colloid Polym Sci 274(6):582–587CrossRefGoogle Scholar
  38. 38.
    Boulyga SF, Becker JS (2002) Improvement of abundance sensitivity in a quadrupole-based ICP-MS instrument with a hexapole collision cell. J Anal At Spectrom 17(9):1202–1206CrossRefGoogle Scholar
  39. 39.
    Kim CS, Kim CK, Lee KJ (2004) Simultaneous analysis of Np-237 and Pu isotopes in environmental samples by ICP-SF-MS coupled with automated sequential injection system. J Anal At Spectrom 19(6):743–750CrossRefGoogle Scholar
  40. 40.
    Grate JW, O’Hara MJ, Farawila AF, Douglas M, Haney MM, Petersen SL, Maiti TC, Aardahl CL (2011) Extraction chromatographic methods in the sample preparation sequence for thermal ionization mass spectrometric analysis of plutonium isotopes. Anal Chem 83(23):9086–9091CrossRefGoogle Scholar
  41. 41.
    Maxwell SL, Nichols ST (2000) Actinide recovery method for large soil samples. Radioact Radiochem 11(4):46–54Google Scholar
  42. 42.
    Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Maxwell SL, Nelson MR (1995) Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion-exchanger-application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 310(1):63–78CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Charles Labrecque
    • 1
  • Julien Légaré Lavergne
    • 1
  • Dominic Larivière
    • 1
  1. 1.Laboratoire de Radioécologie, Département de Chimie, Faculté des Sciences et de GénieUniversité LavalQuébecCanada

Personalised recommendations