Skip to main content
Log in

Electrochemical behavior of plutonium in nitric acid media

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The first step of the spent nuclear fuel reprocessing is a dissolution of actinides and fission products in hot nitric acid at high concentration. Among all these species, the knowledge of redox plutonium equilibria with discerning between their oxidation states is essential to understand and depended on many chemical conditions. Nevertheless, the knowledge of speciation in this media is a challenge especially for a better understanding of corrosion mechanism in the dissolution medium. Thus this paper proposes to determine the electrochemical behaviour of plutonium and especially the Pu(IV)/Pu(III), Pu(VI)/Pu(V) and Pu(V)/Pu(IV) redox couple in nitric acid media and acquire thermodynamic and kinetic constants at higher temperatures than 25 °C and higher nitric concentration than 1 mol L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Katz JJ, Seaborg GT, Morss LR (1986) The chemistry of the actinide elements, vol 1. Chapman and Hall, London

    Book  Google Scholar 

  2. Cleveland JM (1970) The chemistry of plutonium. Gordon and Breach, New York

    Google Scholar 

  3. Lemire RJ, Fuger J, Nitsche H, Potter P, Rand MH, Rydberg J, Spahiu K, Sullivan JC, Ullman WJ, Vitorge P, Wanner H (2001) In: OECD—Nuclear Energy Agency (ed) Chemical thermodynamics 4: chemical thermodynamics of neptunium and plutonium. Elsevier, Amsterdam

    Google Scholar 

  4. Krauss KA (1949) National nuclear energy series IV: the transuranium elements, vol 14B. McGraw Hill, New York, pp 241–263

    Google Scholar 

  5. Kim SY, Asakura T, Morita Y (2013) J Radioanal Nucl Chem. doi:10.1007/s10967-012-1858-z

    Google Scholar 

  6. Steele HM, Guillaumont D, Moisy P (2013) J Phys Chem. doi:10.1021/jp401875f

    Google Scholar 

  7. Georgette S, Picard S, Bouyer C, Deseure J, Lapicque F (2014) J Electroanalytical Chem 727:163–170

    Article  CAS  Google Scholar 

  8. Casadio S, Orlandini F (1971) J Electroanal Chem Interfacial Electrochem. doi:10.1016/S0022-0728(71)80224-3

    Google Scholar 

  9. Wain AG (1966) Report AERE-R5320, U. K. Atomic Energy

  10. Plock CE (1970) Anal Chim Acta. doi:10.1016/S0003-2670(01)80010-6

    Google Scholar 

  11. Kihara S, Yoshida Z, Aoyagi H, Maeda K, Shirai O, Kitatsuji Y, Yoshida Y (1999) Pure Appl Chem (IUPAC). doi:10.1351/pac199971091771

    Google Scholar 

  12. Bard AJ (1980) Electrochemical methods fundamentals and applications. Wiley, New York

    Google Scholar 

  13. Kiekens P, Steen L, Donche H, Temmerman E (1981) Electrochim Acta 26:841–845

    Article  CAS  Google Scholar 

  14. Clavilier J (1999) Dedicated to Dr. J. Clavilier on the occasion of his retirement from Laboratoire d’Electrochimie Interfaciale du CNRS. J Electroanalytical Chem. Elsevier

  15. Baumgärtner F, Schmieder H (1978) Radiochim Acta 25:191–210

    Article  Google Scholar 

  16. Wick OJ (1967) Plutonium handbook a guide to the technology, vol 1. Gordon and Breach, New York

    Google Scholar 

  17. Personal communication (1979) SGN Report BC/PP-CM n°187806

  18. David FH, Fourest B (1997) New J Chem 21:167–176

    CAS  Google Scholar 

  19. Ruas A, Leguay N, Sueur R, Vedel N, Dalier V, Moisy P (2014) Radiochim Acta. doi:10.1515/ract-2013-2213

    Google Scholar 

Download references

Acknowledgments

The authors thank AREVA NC for financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Larabi-Gruet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10967_2015_4423_MOESM1_ESM.tif

Fig. A1 Influence of nitric acid concentration on I–E curves of of Pu(IV) (0.01 mol L−1) in nitric acid (1 mol L−1) on primary axis and nitric acid 5 mol L−1 on secondary axis at 25 °C on gold electrode; ν = 10 mV s−1; ω = 0 rpm. Supplementary material 1 (TIFF 353 kb)

10967_2015_4423_MOESM2_ESM.tif

Fig. A2 Evolution of the curve log(I) = f(log(ω)) of Pu(IV)/Pu(III) redox couple for several conditions of temperature and nitric acid concentration. Supplementary material 2 (TIFF 262 kb)

Table A1Correspondence between nomenclature peaks and electrochemical reactions. Supplementary material 3 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallet, A., Larabi-Gruet, N., Jakab-Costenoble, S. et al. Electrochemical behavior of plutonium in nitric acid media. J Radioanal Nucl Chem 308, 587–598 (2016). https://doi.org/10.1007/s10967-015-4423-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4423-8

Keywords

Navigation