Skip to main content
Log in

Radiological assessment of pharmaceutical clays

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The suitability for pharmaceutical and cosmetic application of fourteen clay samples, eight raw and six commercialized samples, from Minas Gerais and São Paulo states, Brazil, were evaluated and their mineralogy, chemical and radiological composition were determined. Results indicated that the samples are composed mainly of quartz, kaolinite and feldspar, enriched in Al2O3 and TiO2, Cd, Cs, Sb, Se, Th, and U and depleted in SiO2, MgO, P2O5, and Ca. Concentrations found are unlikely to present any harm in topical applications, and all the radiological parameters were below the global average or the established limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vaccari A (1999) Clays and catalysis: a promising future. Appl Clay Sci 14(4):61–198

    Article  Google Scholar 

  2. Harvey CC, Lagaly G (2006) Conventional applications. In: Bergaya F, Theng BKG, Lagaly G (eds) Developments in clay science, vol 1. Elsevier, Amsterdam, pp 501–540

    Google Scholar 

  3. Gatica JM, Vidal H (2010) Non-cordierite clay-based structured materials for environmental applications. J Hazard Mater 181(1–3):9–18

    Article  CAS  Google Scholar 

  4. Rodrigues LAS, Figueiras A, Veiga F, Freitas RM, Nunes LCC, Silva Filho EC, Leite CMS (2013) The systems containing clays and clay minerals from modified drug release: a review. Colloids Surf B 103(1):642–651

    Article  CAS  Google Scholar 

  5. Dondi M, Raimondo M, Zanelli C (2014) Clays and bodies for ceramic tiles: reappraisal and technological classification. Appl Clay Sci 96:91–109

    Article  CAS  Google Scholar 

  6. Maisanaba S, Gutiérrez-Praena D, Puerto M, Moyano R, Blanco A, Jordá M, Cameán AM, Aucejo S, Jos Á (2014) Effects of the subchronic exposure to an organo modified clay mineral for food packaging applications on Wistar rats. Appl Clay Sci 95:37–40

    Article  CAS  Google Scholar 

  7. Veniale F, Barberis V, Carcangiu V, Morandi N, Setti M, Tamanini V, Tessier V (2004) Formulation of muds for pelotherapy: effects of “maturation” by different mineral waters. Appl Clay Sci 25:135–148

    Article  CAS  Google Scholar 

  8. Choy J, Choi S, Oh J, Park T (2007) Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 36(1–3):122–132

    Article  CAS  Google Scholar 

  9. Carretero MI, Pozo M (2009) Clay and non-clay minerals in the pharmaceutical industry: part I. Excipients and medical applications. Appl Clay Sci 46:73–80

    Article  CAS  Google Scholar 

  10. Carretero MI, Pozo M, Martín-Rubí JA, Pozo E, Maraver F (2010) Mobility of elements in interaction between artificial sweat and peloids used in Spanish spas. Appl Clay Sci 48:506–515

    Article  CAS  Google Scholar 

  11. Ngun BK, Mohamad H, Sulaiman SK, Okada K, Ahmad ZA (2001) Some ceramic properties of clays from central Cambodia. Appl Clay Sci 53(1):33–41

    Article  Google Scholar 

  12. Vreca P, Dolonec T (2005) Geochemical estimation of copper contamination in the healing mud from Makirina Bay, central Adriatic. Environ Int 31:53–61

    Article  CAS  Google Scholar 

  13. Cara S, Carcangiu G, Padalino G, Palomba M, Tamanini M (2000) The bentonites in pelotherapy: chemical, mineralogical and technological properties of materials from Sardinia deposits (Italy). Appl Clay Sci 16:117–124

    Article  CAS  Google Scholar 

  14. López-Galindo A, Viseras C, Cerezo P (2007) Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl Clay Sci 36:51–63

    Article  Google Scholar 

  15. Kogel JE, Lewis SA (2001) Baseline studies of the clay minerals society source clays: chemical analysis by inductively coupled plasmamass spectroscopy (ICP-MS). Clays Clay Miner 49(5):387–392

    Article  CAS  Google Scholar 

  16. Carretero MI, Pozo M (2010) Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Appl Clay Sci 47(3–4):171–181

    Article  CAS  Google Scholar 

  17. Rebelo M, Viseras C, López-Galindo A, Rocha F, Silva EF (2011) Characterization of Portuguese geological materials to be used in medical hydrology. Appl Clay Sci 51:258–266

    Article  CAS  Google Scholar 

  18. FDA (2013) Guideline for elemental impurities, Q3D. Available at: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm371025.pdf. Accessed May 2015.

  19. IAEA (2003) Extent of environmental contamination by naturally occurring radioactive material (norm) and technological options for mitigation. Technical Reports Series No. 419. International Atomic Energy Agency, Vienna

  20. UNSCEAR (2010) Sources and effects of ionizing radiation. Volume I: Sources. Report to the General Assembly Scientific Annexes A and B. UNSCEAR 2008 Report. United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations sales publication E.10.XI.3. United Nations, New York

  21. Maxwell O, Wagiran H, Ibrahim N, Lee SK, Embong Z, Ugwuoke PE (2015) Natural radioactivity and geological influence on subsurface layers at Kubwa and Gosa area of Abuja, Northcentral Nigeria. J Radioannal Nucl Chem. 303(1):821–830

    Article  CAS  Google Scholar 

  22. Plant JA, Reeder S, Salminen R, Smith DB, Tarvainen T, De Vivo B, Peterson MG (2003) The distribution of uranium over Europe: geological and environmental significance. Appl Earth Sci 256(3):473–480

    Google Scholar 

  23. Noce CM, Machado N, Teixeira W (1998) U-Pb geocronology of gneisses and granitoids in the Quadrilátero Ferrífero (southern São Francisco Craton): ages constrains for Archean and Paleoproterozoic magmatism and metamorphism. Revista Brasileira de Geociências 28:95–102

    CAS  Google Scholar 

  24. Quéméneur JJG, Noce CM (2000) Geochemistry and petrology of felsic and mafic suítes related to the Paleoproterozoic Transamazonian Orogeny in Minas Gerais, Brazil. Revista Brasileira de Geociências. 30:87–90

    Google Scholar 

  25. IAEA (1990) TECDOC—564 Practical aspects of operating a neutron analysis laboratory. International Atomic Energy Agency, Vienna

    Google Scholar 

  26. Currie LA (2009) Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Pure Appl Chem 67(10):1699–1723

    Google Scholar 

  27. Cutshall NH, Larsen LH, Olsen CR (1983) Direct analysis of 210Pb in sediment samples: self-absorption corrections. Nucl Instrum Methods Phys Res Sect 206:309–312

    Article  CAS  Google Scholar 

  28. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The crust, vol. 3. Elsevier, Amsterdam, pp 1–64

  29. Sposito V (1989) The chemistry of soils. Oxford University Press, New York

    Google Scholar 

  30. Shaheen SM, Tsadilas CD, Rinklebe J (2013) A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties. Adv Colloid Interface Sci 201–202:43–56

    Article  Google Scholar 

  31. Rudnick RL, McLennan SM, Taylor SR (1985) Large ion lithophile elements in rocks from high-pressure granulite facies terrains. Geochim Cosmochim Acta 49(7):1645–1655

    Article  CAS  Google Scholar 

  32. Carvalho C, Anjos RM, Veiga R, Macario K (2011) Application of radiometric analysis in the study of provenance and transport processes of Brazilian coastal sediments. J Environ Radioact 102(2):185–192

    Article  CAS  Google Scholar 

  33. UNSCEAR (2000) Sources and Effects of Ionizing Radiation. Volume II: Effects. UNSCEAR 2000 Report. United Nations Scientific Committee on the Effects of Atomic Radiation, 2000 Report to the General Assembly, with scientific annexes. United Nations sales publication E.00.IX.4. United Nations, New York

  34. Silva PSC, Oliveira SMB, Farias L, Fávaro DIT, Mazzilli BP (2011) Chemical and radiological characterization of clay minerals used in pharmaceutics and cosmetics. Appl Clay Sci 52(1–2):145–149

    Article  CAS  Google Scholar 

  35. Santisteban JI, Mediavilla R, López-Pamo E, Dabrio CJ, Zapata MBR, García MJG, Castaño S, Martínez-Alfaro PE (2004) Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? J Paleolimnol 32:287–299

    Article  Google Scholar 

  36. Stauber JL, Florence TM, Gulson BL, Dale LS (1994) Percutaneous absorption of inorganic lead compounds. Sci Total Environ 145:55–70

    Article  CAS  Google Scholar 

  37. Orgun Y, Altinsoy N, Sahin SY, Gungor Y, Gultekin AH, Karaham G, Karaak Z (2007) Natural and anthropogenic radionuclides in rock sand beach sands from Ezine region (canakkale), Western Anatolia, Turkey. Appl Radiat Isot. 65:739–747

    Article  CAS  Google Scholar 

  38. Taskin H, Karavus M, Ay P, Topuzoglu A, Hindiroglu S, Karahan G (2009) Radionuclide concentrations in soil and life time cancer risk due to the gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100:49–53

    Article  CAS  Google Scholar 

  39. Ramasamy V, Paramasivam K, Suresh G, Jose MT (2014) Function of minerals in the natural radioactivity level of vaigai river sediments, Tamilnadu, India—Spectroscopical approach. Spectrochim. Acta, Part A: molecular and biomolecular. Spectroscopy 117(3):340–350

    CAS  Google Scholar 

  40. ICRP—International Commission on Radiological Protection (1991) ICRP Publication No. 60. Pergamon

  41. ICRP—International Commission on Radiological Protection (1996) Conversion coefficients for use in radiological protection against external radiation ICRP Publication No 74. Pergamon, Oxford

    Google Scholar 

  42. Durham JS (2006) VARSKIN 3: A Computer Code for Assessing Skin Dose from Skin Contamination. NUREG/CR-6918. U.S. Nuclear Regulatory Commission, Washington, DC

  43. ICRP—International Commission on Radiological Protection (2007) The 2007 Recommendations of the International Commission on Radiological Protection, ICRP publication, p 103

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Sergio Cardoso da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, P.S.C., Máduar, M.F., Scapin, M.A. et al. Radiological assessment of pharmaceutical clays. J Radioanal Nucl Chem 307, 2035–2046 (2016). https://doi.org/10.1007/s10967-015-4404-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4404-y

Keywords

Navigation