Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 3, pp 1587–1590 | Cite as

Selective fluorination and separation of metals with NF3 for mass spectrometry

  • Richard A. Clark
  • Charles J. Barinaga
  • Bruce K. McNamara
  • Jon M. Schwantes
  • Nathan E. Ballou
Article
  • 251 Downloads

Abstract

We report recent progress on the development of a new methodology based on the generation of volatile metal fluorides through the use of nitrogen trifluoride (NF3) and the measurement of these metal fluorides by electron ionization mass spectrometry. Though unreactive under ambient conditions, NF3 reacts selectively at specified temperatures with various metal-containing species to form volatile metal fluorides. Utilizing these species-dependent traits, elements of a sample may be sequentially produced and thus separated on-line. Tellurium was reacted inside a thermogravimetric analyzer, the gas outlet of which was directly coupled to a quadrupole mass spectrometer with an electron impact ionization source.

Keywords

Mass spectrometry Fluorination Nitrogen trifluoride Nuclear forensics 

Notes

Acknowledgments

This research funded by Pacific Northwest National Laboratory (PNNL) utilizing Laboratory Directed Research and Development (LDRD) funds. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the United States Department of Energy under DOE Contract Number DE-AC05-76RL1830. This research was performed under the Nuclear Forensics Postdoctoral Fellowship Program, which is sponsored by the US Department of Homeland Security, Domestic Nuclear Detection Office and the US Department of Defense, Defense Threat Reduction Agency.

References

  1. 1.
    Wolf SF (2006) Trace analysis of actinides in geological, environmental, and biological matrices. In: Morss LR, Edelstein NM, Fugar J (eds) The chemistry of the actinide and transactinide elements, vol 5, 3rd edn. Springer, The Netherlands, pp 3273–3338Google Scholar
  2. 2.
    Condon DJ, McLean N, Noble SR, Bowring SA (2010) Isotopic composition (238U/235U) of some commonly used uranium reference materials. Geochim Cosmochim Acta 74:7127–7143CrossRefGoogle Scholar
  3. 3.
    Balcaen L, Moens L, Vanhaecke F (2010) Determination of isotope ratios of metals (and metalloids) by means of inductively coupled plasma-mass spectrometry for provenancing purposes—a review. Spectrochim Acta B 65:769–786CrossRefGoogle Scholar
  4. 4.
    Boulyga SF, Heumann KG (2006) Determination of extremely low 236U/238U isotope ratios in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction. J Environ Radioact 88:1–10CrossRefGoogle Scholar
  5. 5.
    Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608:105–139CrossRefGoogle Scholar
  6. 6.
    Lariviere D, Taylor VF, Evans RD, Cornett RJ (2006) Radionuclide determination in environmental samples by inductively coupled plasma mass spectrometry. Spectrochim Acta B 61:877–904CrossRefGoogle Scholar
  7. 7.
    Shen C-C, Edwards RL, Cheng H, Dorale JA, Thomas RB, Moran SB, Weinstein SE, Edmonds HN (2002) Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry. Chem Geol 185:165–178CrossRefGoogle Scholar
  8. 8.
    Levitz NM, Anastasia LJ, Carls EL, Chilenskas AA, Graae JAE, Jonke AA, Kessie RA, Larsen RP, Mecham WJ, Ramaswami D, Steindler MJ, Vogel GJ (1969) A conceptual design study of a fluoride-volatility plant for reprocessing LMFBR fuels. Argonne National LaboratoryGoogle Scholar
  9. 9.
    Inabinett D, Knight T, Adams T, Gray J (2014) Study of XeF2 fluorination potential against Rh2O3, RuO2, ZrO2, and U3O8 for use in reactive gas recycle of used nuclear fuel. Prog Nucl Energy 76:106–111CrossRefGoogle Scholar
  10. 10.
    Mitkin VN, Shavinsky BM (2009) Application of bromine trifluoride for pre-concentration and determination of rare-earth elements in fuel uranium dioxide. J Fluor Chem 130:117–121CrossRefGoogle Scholar
  11. 11.
    Uhlíř J, Mareček M (2009) Fluoride volatility method for reprocessing of LWR and FR fuels. J Fluor Chem 130:89–93CrossRefGoogle Scholar
  12. 12.
    Iwasaki M (1964) Kinetic studies of the fluorination of uranium oxides by fluorine—I. The fluorination of U3O8 and UO3. J Inorg Nucl Chem 26:1853–1861CrossRefGoogle Scholar
  13. 13.
    Labaton VY, Johnson KDB (1959) The fluorides of uranium—III. Kinetic studies of the fluorination of uranium tetrafluoride by fluorine. J Inorg Nucl Chem 10:74–85CrossRefGoogle Scholar
  14. 14.
    Sakurai T (1974) Comparison of the fluorinations of uranium dioxide by bromine trifluoride and elemental fluorine. J Phys Chem 78:1140–1144CrossRefGoogle Scholar
  15. 15.
    Labaton VY (1959) The fluorides of uranium—IV. Kinetic studies of the fluorination of uranium tetrafluoride by chlorine trifluoride. J Inorg Nucl Chem 10:86–93CrossRefGoogle Scholar
  16. 16.
    Gibson JK, Haire RG (1992) High-temperature fluorination studies of uranium, neptunium, plutonium and americium. J Alloys Compd 181:23–32CrossRefGoogle Scholar
  17. 17.
    Bougon R, Cicha WV, Isabey J (1994) Low-temperature fluorination of ruthenium and osmium di- and tetra-oxides. J Fluor Chem 67:271–276CrossRefGoogle Scholar
  18. 18.
    Asprey LB, Eller PG, Kinkead SA (1986) Formation of actinide hexafluorides at ambient temperatures with krypton difluoride. Inorg Chem 25:670–672CrossRefGoogle Scholar
  19. 19.
    Malm JG, Eller PG, Asprey LB (1984) Low-temperature synthesis of plutonium hexafluoride using dioxygen difluoride. J Am Chem Soc 106:2726–2727CrossRefGoogle Scholar
  20. 20.
    McNamara B, Scheele R, Kozelisky A, Edwards M (2009) Thermal reactions of uranium metal, UO2, U3O8, UF4, and UO2F2 with NF3 to produce UF6. J Nucl Mater 394:166–173CrossRefGoogle Scholar
  21. 21.
    Scheele R, McNamara B, Casella AM, Kozelisky A (2012) On the use of thermal NF3 as the fluorination and oxidation agent in treatment of used nuclear fuels. J Nucl Mater 424:224–236CrossRefGoogle Scholar
  22. 22.
    Scheele RD, McNamara BK, Casella AM, Kozelisky AE, Neiner D (2013) Thermal NF3 fluorination/oxidation of cobalt, yttrium, zirconium, and selected lanthanide oxides. J Fluor Chem 146:86–97CrossRefGoogle Scholar
  23. 23.
    McNamara BK, Buck EC, Soderquist CZ, Smith FN, Mausolf EJ, Scheele RD (2014) Separation of metallic residues from the dissolution of a high-burnup BWR fuel using nitrogen trifluoride. J Fluor Chem 162:1–8CrossRefGoogle Scholar
  24. 24.
    Klee MS (2005) GC inlets: an introduction. Agilent Technologies, Inc. Wilmington, DE, Manual part number 5958–9468Google Scholar
  25. 25.
    Clark RA, McNamara BK, Barinaga CJ, Peterson JM, Govind N, Anderson A, Abrecht DG, Schwantes JM, Ballou NE (2015) Electron ionization mass spectrum of tellurium hexafluoride. Inorg Chem 54:4821–4826CrossRefGoogle Scholar
  26. 26.
    Lide DR (2003–2004) CRC handbook of chemistry and physics, 84th edn. CRC press, Boca RatonGoogle Scholar
  27. 27.
    Brooks LS (1952) The vapor pressures of tellurium and selenium. J Am Chem Soc 74:227–229CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Richard A. Clark
    • 1
  • Charles J. Barinaga
    • 1
  • Bruce K. McNamara
    • 1
  • Jon M. Schwantes
    • 1
  • Nathan E. Ballou
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations