Skip to main content
Log in

Compton background suppression with a multi-element scintillation detector using high speed data acquisition and digital signal processing

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A multi-element scintillation detector, consisting of eight NaI(Tl)/BGO scintillators surrounding a single NaI(Tl)/CsI(Tl) scintillator, was initially developed for locating and measuring concealed special nuclear materials that emit primarily low energy photons. Signal digitizers and LabView virtual instrument (VI) subroutines process and analyze pulses from each of the dual scintillators to suppress Compton interactions occurring in the central detector and discriminate between low and high energy photon events occurring within NaI(Tl) and CsI(Tl) crystals, respectively. Digital signal processing significantly improved the signal-to-noise ratio of the central detector and greatly reduced the analog electronic equipment required in the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sellers MT, Kelly DG, Corcoran EC (2011) An automated delayed neutron counting system for mass determinations of special nuclear materials. J Radioanal Nucl Chem 291(2):281–285. doi:10.1007/s10967-011-1223-7

    Article  Google Scholar 

  2. Valentine TE (2008) Overview of nuclear detection needs for homeland security. Oak Ridge National Laboratory

  3. DNDO (2012) Nuclear Security Summit. Department of Homeland Security

  4. Wulf EA, Phlips BF, Neil Johnson W, Kurfess JD, Novikova EI, O’Connor P, De Geronimo G (2007) Compton imager for detection of special nuclear material. Nucl Instrum Methods Phys Res Sect A 579(1):371–374. doi:10.1016/j.nima.2007.04.085

    Article  CAS  Google Scholar 

  5. Harbottle G, Cumming JB (1994) Performance and promise of the Compton suppression well counter. Nucl Instrum Methods Phys Res Sect A 353(1–3):503–507. doi:10.1016/0168-9002(94)91709-4

    Article  CAS  Google Scholar 

  6. Britton R (2012) Compton suppression systems for environmental radiological analysis. J Radioanal Nucl Chem 292(1):33–39. doi:10.1007/s10967-011-1362-x

    Article  CAS  Google Scholar 

  7. Stover T, Lamaze G (2005) Compton suppression for neutron activation analysis applications at the National Institute of Standards and Technology (NIST). Nucl Instrum Methods Phys Res Sect B 241(1–4):223–227. doi:10.1016/j.nimb.2005.07.085

    Article  CAS  Google Scholar 

  8. Knoll GF (1999) Radiation detection and measurement, vol 3. Wiley, New York

    Google Scholar 

  9. Canberra (1998) Compton suppression… made easy canberra. http://www.canberra.com/literature/gamma_spectroscopy/application_notes/comptonsupp.pdf

  10. Sever Y, Lippert J (1965) A compton-rejection germanium spectrometer. Nucl Instrum Methods 33(2):347–348. doi:10.1016/0029-554X(65)90074-1

    Article  CAS  Google Scholar 

  11. ANSI/IEEE (1986) Test procedures for germanium gamma ray detectors. ANSI/IEEE Std 325-1986. doi:10.1109/ieeestd.1987.81600

  12. Masse D, Adam A, Laurec J (1991) A Ge—¸NaI(Tl) spectrometer with Compton suppression and gamma coincidence counting. Application to 189Ir and 101Rh activity measurements. Nucl Instrum Methods Phys Res Sect A 309(1–2):227–235. doi:10.1016/0168-9002(91)90107-2

    Article  Google Scholar 

Download references

Acknowledgments

This material is based, in part, upon work supported by the US Department of Homeland Security under grant award number 2012-DN-130-NF001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the US Department of Homeland Security.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Popescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popescu, G., Herman, S., Glover, S. et al. Compton background suppression with a multi-element scintillation detector using high speed data acquisition and digital signal processing. J Radioanal Nucl Chem 307, 1949–1955 (2016). https://doi.org/10.1007/s10967-015-4355-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4355-3

Keywords

Navigation