Skip to main content
Log in

Real-time stack monitoring at the BaTek medical isotope production facility

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radioxenon emissions from fission-based radiopharmaceutical production are a major source of background concentrations affecting the radioxenon detection systems of the international monitoring system (IMS). Collection of real-time emissions data from production facilities makes it possible to screen out some medical isotope signatures from the IMS radioxenon data sets. This paper describes an effort to obtain and analyze real-time stack emissions data with the design, construction and installation of a small stack monitoring system developed by a joint CTBTO-IDC, BATAN, and Pacific Northwest National Laboratory team at the BaTek medical isotope production facility near Jakarta, Indonesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. OECD (2014) Medical Isotope Supply in the Future: Production Capacity and Demand Forecast for the 99Mo/99mTc Market, 2015–2020. vol NEA/SEN/HLGMR(2014)2. Nuclear Energy Agency. Organisation for Economic Co-Operation and Development, Paris, France

  2. Chadwick MB, Herman M, Obložinský P, Dunn ME, Danon Y, Kahler AC, Smith DL, Pritychenko B, Arbanas G, Arcilla R, Brewer R, Brown DA, Capote R, Carlson AD, Cho YS, Derrien H, Guber K, Hale GM, Hoblit S, Holloway S, Johnson TD, Kawano T, Kiedrowski BC, Kim H, Kunieda S, Larson NM, Leal L, Lestone JP, Little RC, McCutchan EA, MacFarlane RE, MacInnes M, Mattoon CM, McKnight RD, Mughabghab SF, Nobre GPA, Palmiotti G, Palumbo A, Pigni MT, Pronyaev VG, Sayer RO, Sonzogni AA, Summers NC, Talou P, Thompson IJ, Trkov A, Vogt RL, van der Marck SC, Wallner A, White MC, Wiarda D, Young PG (2011) ENDF/B-VII.1 Nuclear Data for Science and Technology: cross sections, covariances, fission product yields and decay data. Nucl Data Sheets 112(12):2887–2996. doi:10.1016/j.nds.2011.11.002

    Article  CAS  Google Scholar 

  3. CTBTO (2013) Comprehensive nuclear-test-ban-treaty organization (CTBTO) preparatory Commission Web Page. http://www.ctbto.org/. Accessed 19 Sept 2013

  4. Saey PRJ, Ringbom A, Bowyer TW, Za¨hringer M, Auer M, Faanhof A, Labuschagne C, Al-Rashidi MS, Tippawan U, Verboomen B (2012) Worldwide measurements of radioxenon background near isotope production facilities, a nuclear power plant and at remote sites: the ‘‘EU/JA-II’’ Project. J Radioanal Nucl Chem. doi:10.1007/s10967-012-2025-2

    Google Scholar 

  5. Wotawa G, Becker A, Kalinowski M, Saey P, Tuma M, Zähringer M (2010) Computation and analysis of the global distribution of the radioxenon isotope 133Xe based on emissions from nuclear power plants and radioisotope production facilities and its relevance for the verification of the nuclear-test-ban treaty. Pure Appl Geophys 167(4–5):541–557. doi:10.1007/s00024-009-0033-0

    Article  Google Scholar 

  6. Ringbom A, Axelsson A, Aldener M, Auer M, Bowyer TW, Fritioff T, Hoffman I, Khrustalev K, Nikkinen M, Popov V, Popov Y, Ungar K (2013) Wotawa G (2014) Radioxenon detections in the CTBT international monitoring system likely related to the announced nuclear test in North Korea on February 12. J Environ Radioact 128:47–63. doi:10.1016/j.jenvrad.2013.10.027

    Article  Google Scholar 

  7. Becker A, Wotawa G, Ringbom A, Saey PRJ (2010) Backtracking of noble gas measurements taken in the aftermath of the announced October 2006 event in North Korea by means of PTS methods in nuclear source estimation and reconstruction. Pure Appl Geophys 167(4):581–599. doi:10.1007/s00024-009-0025-0

    Article  Google Scholar 

  8. Kalinowski M, Axelsson A, Bean M, Blanchard X, Bowyer T, Brachet G, Hebel S, McIntyre J, Peters J, Pistner C, Raith M, Ringbom A, Saey P, Schlosser C, Stocki T, Taffary T, Kurt Ungar R (2010) Discrimination of nuclear explosions against civilian sources based on atmospheric xenon isotopic activity ratios. Pure Appl Geophys 167(4):517–539. doi:10.1007/s00024-009-0032-1

    Article  Google Scholar 

  9. Zähringer M, Becker A, Nikkinen M, Saey P, Wotawa G (2009) CTBT radioxenon monitoring for verification: today’s challenges. J Radioanal Nucl Chem 282(3):737–742. doi:10.1007/s10967-009-0207-3

    Article  Google Scholar 

  10. Bowyer TW, Kephart R, Eslinger PW, Friese JI, Miley HS, Saey PRJ (2013) Maximum reasonable radioxenon releases from medical isotope production facilities and their effect on monitoring nuclear explosions. J Environ Radioact 115(1):192–200. doi:10.1016/j.jenvrad.2012.07.018

    Article  CAS  Google Scholar 

  11. van Loef EVD, Dorenbos P, van Eijk CWE, Krämer K, Güdel HU (2000) High-energy-resolution scintillator: Ce3+ activated LaCl3. Appl Phys Lett 77(10):1467–1468. doi:10.1063/1.1308053

    Article  CAS  Google Scholar 

  12. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Gómez Cadenas JJ, González I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampén T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Mora de Freitas P, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, Di Salvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Safai Tehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch JP, Wenaus T, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D (2003) Geant4—a simulation toolkit. Nucl Instrum Methods A 506(3):250–303. doi:10.1016/S0168-9002(03)01368-8

    Article  CAS  Google Scholar 

  13. NuDat (2014) NuDat 2.6 database, nuclear structure and decay data. National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2/. Accessed 20 Sept 2014

  14. Eslinger PW, Cameron IM, Dumais JR, Imardjoko Y, Marsoem P, McIntyre JI, Miley HS, Stoehlker U, Widodo S, Woods VT (2015) Source term estimates of radioxenon released from the BaTek medical isotope production facility using external measured air concentrations. J Environ Radioact 148:10–15. doi:10.1016/j.jenvrad.2015.05.026

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the funding support of the U.S. Office of Multilateral and Nuclear Affairs in the Bureau of Arms Control, Verification and Compliance Nuclear, at the Department of State and the U.S. Nuclear Arms Control Technology Program, at the Defense Threat Reduction Agency. The stack monitor equipment and data analysis to support the CTBTO in implementing the noble gas verification regime were funded by the European Union through Council Joint Action 2008/588/CFSP of 15 July 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Eslinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McIntyre, J.I., Agusbudiman, A., Cameron, I.M. et al. Real-time stack monitoring at the BaTek medical isotope production facility. J Radioanal Nucl Chem 308, 311–316 (2016). https://doi.org/10.1007/s10967-015-4348-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4348-2

Keywords

Navigation