Skip to main content
Log in

Simultaneous separation and purification of plutonium and americium from aqueous nitrate solutions using extractant impregnated macroporous polymeric beads

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The removal of Pu(IV) and Am(III) ions from aqueous nitrate solutions was studied using indigenously synthesized Extractant Impregnated Macroporous Polymeric Beads (EIMPBs). These beads exhibited almost quantitative sorption of Pu(IV) at acid strength of >2 M HNO3 while that of Am(III) at pH 3. Langmuir sorption model was found suitable, with the sorption capacity of EIMPBs for Pu(IV) and Am(III) as 2.13 and 2.64 mg g−1 respectively. Its performance remained unchanged until seven cycles of extraction and stripping using 0.1 M oxalic acid. A flow sheet for Purification of Pu(IV)/Am(III) from its mixture is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. IAEA, (2001) Handling and processing of radioactive waste from nuclear applications. International Atomic Energy Agency, Technical Reports Series No. 402, IAEA, Vienna, Austria

  2. Raj K, Prasad KK, Bansal NK (2006) Radioactive waste management practices in India. Nucl Eng Des 236(7–8):914–930

    Article  CAS  Google Scholar 

  3. Taylor David M (1989) The biodistribution and toxicity of plutonium, americium and neptunium. Sci Total Environ 83(3):217–225

    Article  Google Scholar 

  4. Michael KM, Rizvi GH, Mathur JN, Kapoor SC, Ramanujam A, Iyer RH (1997) Recovery of plutonium and americium from laboratory acidic waste solutions using tri-n-octylamine and octylphenyl-N-N- diisobutylcarbamoylmethylphosphine oxide. Talanta 44(11):2095–2102

    Article  CAS  Google Scholar 

  5. Law JD, Brewer KN, Herbst RS, Todd TA, Wood DJ (1999) Development and demonstration of solvent extraction processes for the separation of radionuclides from acidic radioactive waste. Waste Manag 19(1):27–37

    Article  CAS  Google Scholar 

  6. Gamare JS, Chetty KV, Mukerjee SK, Kannan S (2009) Extraction studies of uranium(VI), plutonium(IV) and americium(III) from nitric acid using the bi-functional carbamoyl methyl sulfoxide ligands. Anal Sci 25(9):1167–1170

    Article  CAS  Google Scholar 

  7. Riitta P, Michael B (2000) Actinide separations by extraction chromatography. Appl Radiat Isot 53:273–277

    Article  Google Scholar 

  8. Desideri D, Feduzi L, Meli MA, Roselli C (2011) Sequential determination of Am, Cm, Pu, Np and U by extraction chromatography. Microchem J 97(2):264–268

    Article  CAS  Google Scholar 

  9. Fryxell GE, Lin Y, Fiskum S, Birnbaum JC, Wu H, Kemner K, Kelly S (2005) Actinide sequestration using self-assembled monolayers on mesoporous supports. Environ Sci Technol 39:1324–1331

    Article  CAS  Google Scholar 

  10. Petrukhin OM, Spivakov BY, Morgalyuk VP, Malofeeva GI, Kuzovkina EV, Novikov AP (2011) Solid-Phase extraction of Plutonium (IV) an Americium(III) using N-Benzoylphenylhydroxylamine and its derivatives. Russ J Inorg Chem 56:1839–1846

    Article  CAS  Google Scholar 

  11. Dhami PS, Kannan R, Naik PW, Gopalakrishnan V, Ramanujam A, Salvi NA, Chattopadhyay S (2002) Biosorption of americium using biomasses of various Rhizopus species. Biotechnol Lett 24(11):885–889

    Article  CAS  Google Scholar 

  12. Mohapatra PK, Manchanda VK (2003) Liquid membrane based separations of actinides and fission products. Indian J Chem Sect A 42:2925–2938

    Google Scholar 

  13. Sriram S, Mohapatra PK, Pandey AK, Manchanda VK, Badheka LP (2000) Facilitated transport of americium(III) from nitric acid media using dimethyldibutyltetradecyl-1,3-malonamide. J Membr Sci 177:163–175

    Article  CAS  Google Scholar 

  14. Sportsman S, Bluhm E, Abney K (2003) The separation of americium and plutonium achieved by facilitated transport through fixed site carrier membranes utilizing CMPO ligands. AIP Conf Proc 673(1):50–51

    Article  Google Scholar 

  15. Adya VC, Sengupta A, Ansari S, Mohapatra PK, Bhide MK, Godbole SV (2013) Application of hollow fiber supported liquid membrane for the separation of americium from the analytical waste. J Radioanal Nucl Chem 295(2):1023–1028

    Article  CAS  Google Scholar 

  16. Kim BT, Lee HK, Moon H, Lee KJ (1995) Adsorption of radionuclides from aqueous solutions by inorganic adsorbents. Sep Sci Technol 30(16):3165–3182

    Article  CAS  Google Scholar 

  17. Shehee TC, Elvington MC, Rudisill TS, Hobbs DT (2012) Separation of Actinides and Fission Products Using Titanium-Based Materials. Solvent Extr Ion Exch 30(7):669–682

    Article  CAS  Google Scholar 

  18. Galamboš M, Suchánek P, Rosskopfová O (2012) Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. J Radioanal Nucl Chem 293(2):613–633

    Article  Google Scholar 

  19. Neace JC (1983) Diluent degradation products in the purex solvent. Sep Sci Technol 18:1581–1594

    Article  CAS  Google Scholar 

  20. Tripathi SC, Ramanujam A (2003) Effect of radiation-induced physiochemical transformations on density and viscosity of 30 % TBP-n-dodecane-HNO3 system. Sep Sci Technol 38:2307–2326

    Article  CAS  Google Scholar 

  21. Sastre AM, Kumar A, Shukla JP, Singh RK (1998) Improved techniques in liquid membrane separations: an overview. Sep Purif Methods 27(2):213–298

    Article  CAS  Google Scholar 

  22. Pathak SK, Tripathi SC, Singh KK, Mahtele AK, Dwivedi C, Juby KA, Kumar M, Gandhi PM, Bajaj PN (2013) PC-88A—impregnated polymeric beads: preparation, characterization and application for extraction of Pu(IV) from nitric acid medium. Radiochim Acta 101:1–11

    Article  Google Scholar 

  23. Kedari CS, Kumar M, Tripathi SC, Dakshinamoorthy A, Munshi SK, Dey PK (2008) Extraction of U(VI), Pu(IV), Am(III) and some fission products by 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester immobilized polyvinyl alcohol hydrogels. J Radioanal Nucl Chem 277(2):321–327

    Article  CAS  Google Scholar 

  24. Gupta KK, Misra SK, Tripathi SC, Kumar M (2010) Extraction studies of plutonium from acidic solution using γ-ray induced PC-88A/TBP modified polymers. J Radioanal Nucl Chem 283(2):353–357

    Article  CAS  Google Scholar 

  25. Kedari CS, Pandit SS, Parikh KJ, Tripathi SC (2010) Removal of 241Am from aqueous nitrate solutions by liquid surfactant membrane containing 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester as ion carrier. Chemosphere 80:433–437

    Article  CAS  Google Scholar 

  26. Ngah WSW, Hanafiah M, Yong SS (2008) Adsorption of humic acid from aqueous solution on cross-linked chitosan-epichlorohydrin beads: kinetic and isotherm studies. Colloids Surf B 65:18–24

    Article  Google Scholar 

  27. Ho YS, McKay G (1998) A Comparison of chemisorptions kinetic models applied to pollutant removal on various sorbents. Proc Saf Environ Prot 76:332–340

    Article  CAS  Google Scholar 

  28. McKay G, Ho YS (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–460

    Article  Google Scholar 

  29. Yang XY, Al-Duri B (2005) Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J Colloid Interface Sci 287:25–34

    Article  CAS  Google Scholar 

  30. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  31. Mohan D, Chander S (2006) Single, binary and multi component sorption of iron and manganese on lignite. J Colloid Interface Sci 299:57–76

    Article  Google Scholar 

  32. Freundlich HMF (1906) Z Phys Chem 57:385–470

    CAS  Google Scholar 

  33. Temkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR 12:327–356

    CAS  Google Scholar 

  34. Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem Rev 60:235–266

    Article  CAS  Google Scholar 

  35. Allen SJ, Gan Q, Matthews R, Johnson PA (2003) Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresour Technol 88:143–152

    Article  CAS  Google Scholar 

  36. Zhang A, Wei Y, Kumagai M (2004) Synthesis of a novel macroporous silica-based polymeric material containing 4,4′, (5′)-di(tert-butylcyclohexano)-18-crown-6 functional group and its adsorption mechanism for strontium. React Funct Polym 61(2):191–202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to acknowledge their sincere thanks to Dr. B. N. Jagtap, Director, Chemistry Group and Dr. D. K. Palit Head, Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India for their encouragement during the course of the present research and development work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Tripathi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 618 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, S.K., Tripathi, S.C., Singh, K.K. et al. Simultaneous separation and purification of plutonium and americium from aqueous nitrate solutions using extractant impregnated macroporous polymeric beads. J Radioanal Nucl Chem 308, 47–57 (2016). https://doi.org/10.1007/s10967-015-4330-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4330-z

Keywords

Navigation