Skip to main content
Log in

Application of 12 MeV proton activation to the analysis of archaeological specimens

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

12 MeV proton activation analysis is applied to a variety of archaeological specimens (glass, pottery, mortar and ivory) and its usefulness studied. The method is non-destructive and Ca, Ti, V, Cr, Fe, Cu, Zn, As, Sr, Y, Zr and Sb, ranging from percentage to parts per million (ppm) level were determined. The detection limits in archaeological glass for Ti, V, Cr, Fe, As, Sr, Y and Zr are at 1–10 ppm level; Cu, Zn and Sb at 20–35 ppm level, and Ca at 150 ppm level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barrondon JN, Callu JP, Brenot C (1977) The analysis of Constantin coins (A.D. 313-40) by non-destructive Californium 252 activation analysis. Archaeometry 19:173–186

    Article  Google Scholar 

  2. Hoffmann P, Vetter G (1990) Analytical examination of mortars from the medieval derelict village Holzheim. Fresenius J Anal Chem 338:133–137

    Article  CAS  Google Scholar 

  3. Mommsen H, Hein A, Hähnel E (1997) Classification of medieval ceramics in the Rhineland and neighbouring areas by neutron activation analysis. J Radioanal Nucl Chem 216:247–252

    Article  CAS  Google Scholar 

  4. Drauschke J, Greiff S (2010) Early Byzantine glass from Caričin Grad/Iustiniana Prima (Serbia): first results concerning the composition of raw glass chunks. In: B. Zorn u. A. Hilgner (Hrsg.), Glass along the Silk Road from 200 BC to 1000 AD. Tagungen des RGZM 9 (Mainz), pp. 53–67. Verlag des Römisch-Germanischen Zentralmuseum, Mainz (ISBN 978-3-88467-148-1)

  5. Pollard AM, Batt CM, Stern B, Young SMM (2007) Analytical chemistry in archaeology. Cambridge University Press, UK

    Book  Google Scholar 

  6. Müller K, Reiche I (2011) Differentiation of archaeological ivory and bone materials by micro-PIXE/PIGE with emphasis on two upper Paleolithic key sites: Abri Pataud and Isturitz, France. J Archaeol Sci 38:3234–3243

    Article  Google Scholar 

  7. Freestone IC (2007) Application and potential of Electron Probe Micro Analysis in technological and provenance investigations of ancient ceramics. Archaeometry 24:99–116

    Article  Google Scholar 

  8. Barone G, Mazzoleni P, Aquilia A, Barbera G (2014) The Hellenistic and Roman Syracuse (Sicily) fine pottery pottery production explored by chemical and petrographic analysis. Archaeometry 56:70–87

    Article  CAS  Google Scholar 

  9. Hunt AMW, Dvoracek D, Glascock MD, Speakman RJ (2014) Major, minor and trace element mass fractions determined using ED-XRF, WD-XRF and INAA for three fireclay reference materials: c.137; c.138; and c.139. J Radioanal Nucl Chem 303:977–978. doi:10.1007/s10967-014-3365-x

    Article  Google Scholar 

  10. Albert Ph, Chaudron G, Süe P (1953) Microdosage par voie chimique du carbone dans le fer irradie par le deutons. Bulletin de la Societie Chimique de France 20:97–102

    Google Scholar 

  11. Engelmann Ch (1971) Contribution a l`etude de la determination de Be, B, C, N, O et F par activation au moyen de p, d, 3He et α. J Radioanal Chem 7:89–101

    Article  CAS  Google Scholar 

  12. Petri H, Sastri CS (1975) Oxygen determination in aluminium by Helium-3 activation analysis. Fresen Z Anal Chem 277:25–28

    Article  CAS  Google Scholar 

  13. Sastri CS, Blondiaux G, Hoffmann P, Ortner HM, Petri H (2000) Oxygen determination in calcium fluoride by deuteron activation analysis. Fresenius J Anal Chem 366:218–220

    Article  CAS  Google Scholar 

  14. Sastri CS, Blondiaux G, Petri H (1997) Trace determination of carbon, sodium, magnesium and aluminum in metals and ceramic materials by low energy deuteron activation analysis. Nucl Instrum Methods Phys Res B 124:558–566

    Article  CAS  Google Scholar 

  15. Barthe MF, Giovagnoli A, Blondiaux G, Debrun JL, Tregoat Y, Barraud JY (1990) Fast analysis of oxygen in fluoride glasses (ZBLAN) by charged particle activation analysis (16O(d, n)17F). Nucl Instrum Methods Phys Res B45:105–106

    Article  CAS  Google Scholar 

  16. Sastri CS, Blondiaux G, Petri H, Michulitz M (2000) Stoichiometric determination of carbon in ceramic materials by low energy deuteron activation analysis. J Radioanal Nucl Chem 244:457–462

    Article  CAS  Google Scholar 

  17. Krivan V, Swindle DL, Schweikert EA (1974) Nondestructive determination of some trace elements in tantalum by proton activation analysis. Anal Chem 46:1626–1629

    Article  CAS  Google Scholar 

  18. Sastri CS, Petri H, Erdtmann G (1977) Determination of 13 elements with atomic numbers between 12 and 47 by 14-MeV Helium-3 activation analysis. Anal Chem 49:1510–1513

    Article  CAS  Google Scholar 

  19. Lacroix O, Sauvage T, Blondiaux G, Guinard L (1997) Ultra thin layer activation by recoil implantation of radioactive heavy ions; applicability in wear and corrosion studies. Nucl Instrum Methods Phys Res B 122:262–268

    Article  CAS  Google Scholar 

  20. Vandecasteele C (1988) Activation analysis with charged particles. Ellis Horwood Limited, Chichester

    Google Scholar 

  21. Ishii K, Valladon M, Debrun JL (1978) The average stopping power method for accurate charged particle analysis. Nucl Instrum Methods 150:213–219

    Article  CAS  Google Scholar 

  22. Ishii K, Valladon M, Sastri CS, Debrun JL (1978) Accurate charged particle activation analysis: calculation of the average energy in the average stopping power method. Nucl Instrum Methods 153:503–505

    Article  CAS  Google Scholar 

  23. Debrun JL, Barrandon JN, Benaben P (1976) Irradiation of elements from Z = 3 to Z = 42 with 10 MeV protons and application to activation analysis. Anal Chem 48:167–172

    Article  CAS  Google Scholar 

  24. Albert Ph, Blondiaux G, Debrun JL, Giovagnoli A, Valladon M (1987) Thick target yields for the production of radioisotopes, vol 273., Technical report seriesIAEA, Vienna

    Google Scholar 

  25. Zikovsky L, Schweikert EA (1977) Comparison of nondestructive proton and neutron activation: the case of biological samples. J Radioanal Chem 37:571–580

    Article  CAS  Google Scholar 

  26. Guerra MF, Calligaro T (2004) Gold traces to trace gold. J Archaeol Sci 31:1199–1208

    Article  Google Scholar 

  27. Hofmann G, Banerjee A (1994) “Wandmalereien aus einem roemischen Wohnhaus in Mainz: Naturwissenschaftliche Untersuchungen ueber den Aufbau der Putzschichten und die Zusammensetzung der Farbpigmente” in Mainzer Archaeologische Zeitschrift. Band 1, pp 211–227. Generaldirektion Kulturelles Erbe Rheinland-Pfalz. (ISBN 3-8053-2271-2)

  28. Banerjee A, Bortalaso G, Dindorf W (2008) Distinction between African and Asian ivory. Bundesamt für Naturschutz, Bonn, pp 37–49

    Google Scholar 

  29. Sastri CS, Banerjee A, Sauvage T, Courtois B, Schuhmacher T (2013) Fluorine determination in different types of ivory by PIGE technique. J Radioanal Nucl Chem 298:311–315

    Article  CAS  Google Scholar 

  30. Ziegler JF, Ziegler MD, Biersack JP (2008) The stopping and range of ions in matter, Version SRIM-2008.04, http://www.srim.org

  31. Chu SYF, Ekström LP, Firestone RB (1999) The Lund/LBNL nuclear data search, Version 2.0, http://www.nucleardata.nuclear.lu.se/toi/

  32. Ricci E, Hahn RL (1967) Sensitivities for activation analysis of 15 light elements with 18 MeV Helium-3 particles. Anal Chem 39:794–797

    Article  CAS  Google Scholar 

  33. Rosenow D, Rehren Th (2014) Herding cats: Roman to late antique glass groups from Bubastis, northern Egypt. J Archaeol Sci 49:170–184

    Article  CAS  Google Scholar 

  34. Riedel N (2007) “Provinzialrömische Wandmalerei in Deutschland“: Thesis. Universität Bamberg, Germany

    Google Scholar 

  35. Deconninck G (1978) Introduction to radioanalytical physics. Elsevier, Amsterdam

    Google Scholar 

  36. Neelmeijer C, Mäder M (2004) Reverse painting on glass as seen by the proton beam. Nucl Instrum Methods Phys Res, Sect B 226:126–135

    Article  CAS  Google Scholar 

  37. Degryse P, Schneider J, Poblome J, Waelkens M, Haack U, Muchez P (2005) A geochemical study of Roman to early Byzantine glass from Sagalassos, South-west Turkey. J Archaeol Sci 32:287–299

    Article  Google Scholar 

  38. Foster HE, Jackson CM (2010) The composition of late Romano-British colourless vessel glass: glass production and consumption. J Archaeol Sci 37:3068–3080

    Article  Google Scholar 

  39. Takeuchi T, Nakano Y, Koike H (1998) Neutron activation analysis of ivory of African elephants. J Radiochem Nucl Chem 235:273–277

    Article  CAS  Google Scholar 

  40. Sastri CS, Caletka R, Krivan V (1981) Simultaneous determination of boron and lithium by charged particle activation analysis. Anal Chem 53:765–770

    Article  CAS  Google Scholar 

  41. Sastri CS, Iyengar V, Blondiaux G, Sauvage T, Tessier Y (2002) Determination of boron by (p,α) reaction. J Radioanal Nucl Chem 254:53–56

    Article  CAS  Google Scholar 

  42. Olivier C, Morland HJ (1992) Average stopping powers and the use of non-analyte spiking for the determination of phosphorous and sodium by PIPPS. J Radioanal Nucl Chem 160:211–219

    Article  CAS  Google Scholar 

  43. Degryse P, Shortland J (2009) Trace elements in provenancing raw materials for Roman glass production. Geologica Belgica 12(3-4):135–143

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. M. Egg and Frau Dr. S. Greiff of Römisch-Germanisches Zentralmuseum, Mainz for supplying Roman ivory and Roman glass (pale blue) specimens, respectively. Special thanks are due to Frau Dr. B. Heide and Frau Dr. E. Riemer of Landesmuseum, Mainz (Abteilung: Archäologie), for supplying the Roman glass (dark blue) specimen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaturvedula S. Sastri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sastri, C.S., Banerjee, A., Sauvage, T. et al. Application of 12 MeV proton activation to the analysis of archaeological specimens. J Radioanal Nucl Chem 308, 241–249 (2016). https://doi.org/10.1007/s10967-015-4313-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4313-0

Keywords

Navigation