Skip to main content
Log in

Preparation, characterization and ion-exchange behavior of polyantimonic acid-polyacrylonitrile (PAA–PAN) composite beads for strontium(II)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An organic–inorganic composite ion exchanger of polyantimonic acid-polyacrylonitrile (PAA–PAN) was synthesized to remove strontium(II) from radioactive waste water. Ion exchange behavior of the composite toward strontium(II) were investigated and the results indicated that the composite presents excellent performance in 0.1 mol L−1 nitric acid. The maximum uptake capacity of strontium(II) can reach up to 49 mg g−1 on composite. Adsorption thermodynamic parameters showed that the ion exchange was endothermic and spontaneous reaction and equilibrium adsorption data fit well with the Langmuir adsorption isotherms. In addition, PAA–PAN beads were found to have chemical and adsorption stability under irradiation and acidic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. IAEA (2002) Issues and trends in radioactive waste management. Proceeding Series, STI/PUB/1175, IAEA, Vienna

  2. Kige PJ (2013) Latest radioactive leak at Fukushima: how is it different? http://news.nationalgeographic.com/news/energy/2013/08/130821

  3. Zhang Anyunq, Kuraoka Etsushu, Kumagai Mikio (2007) Development of the chromatographic partitioning of cesium and strontium utilizing two macroporous silica-based calix[4]arene-crown and amide impregnated polymeric composites: PREC partitioning process. J Chromatogr A 1157:85–95

    Article  CAS  Google Scholar 

  4. Zhang Anyun, Wei Yuezhou, Hoshi Harutaka, Kumagai Mikio (2005) Chromatographic Separation of Strontium (II) from a Nitric Acid Solution Containing some Typically Simulated Elements by a Novel Silica-Based TODGA Impregnated Polymeric Composite in the MAREC Process. Solvent Extr Ion Exc 23:231–247

    Article  CAS  Google Scholar 

  5. Yuezhou Wei (2011) Progress and Discussion on Chemical Separation Technologies for Nuclear Fuel Reprocessing Developed Abrosd. Progr Chem 23(7):1272–1288

  6. Hitoshi MIMURA, Kenichi AKIBA (1994) Separation of heat-generating nuclides from high-level liquid wastes through zeolite columns. J Nucl Sci Technol 31:463–469

    Article  Google Scholar 

  7. Fourie HO, Ghijsels JP (1969) Radiostrontium in biological material: precipitation and extraction procedure eliminating the use of fuming nitric acid. Health Phys 17(5):685–689

    Article  CAS  Google Scholar 

  8. Tian Guoxin (2005) Extraction of strontium from HLLW using N,N,N′,N′-tetraisobutyl 3-oxa-glutaramide. Solvent Extr Ion Exch 23:519–528

    Article  CAS  Google Scholar 

  9. Riddle CL, Baker JD, Law JD, McGrath CA (2005) Fission product extraction (FPEX): development of a novel solvent for the simultaneous separation of strontium and cesium from acidic solutions. Solvent Extr Ion Exch 23:449–461

    Article  CAS  Google Scholar 

  10. Romanovskiy VN, Smirnov IV (2001) The universal solvent extraction (UNEX) process I development of the UNEX process solvent for the separation of cesium, strontium, and the actinides from acidic radioactive waste. Solvent Extr Ion Exch 19(1):1–21

    Article  CAS  Google Scholar 

  11. Philip Horwitz E, Chiarizia R, Dietz ML (1992) A novel strontium-selective extraction chromatographic resin. Solvent Extr Ion Exch 10(2):313–336

    Article  Google Scholar 

  12. Inan Suleyman, Nostar Emine (2013) Structure and ion exchange behavior of zirconium antimonates for strontium. Sep Sci Technol 48:1364–1369

    Article  CAS  Google Scholar 

  13. Mushtaq A (2004) Inorganic ion-exchangers: their role in chromatographic radionuclide generators for the decade 1993–2002. J Radioanal Nucl Chem 262(3):797–810

    Article  CAS  Google Scholar 

  14. Sylvester Paul, Beherns Elizabeth A (1999) An assessment of inorganic ion-exchange materials for the removal of strontium from simulated Hanford tank wastes. Sep Sci Technol 34(10):1981–1992

    Article  CAS  Google Scholar 

  15. Zouad S, Loos-Neskovic C, Fedoroff M (1987) Fixation of strontium on polyantimonic acid. J Radioanal Nucl Chem 111:337–349

    Article  CAS  Google Scholar 

  16. Weng H, Li T (1982) Separation of 90Sr from 1AW wastes with polyantimonic acids. Chin J Nucl Sci Eng Sep 29(5):238–244

  17. Sebesta F (1997) Composite sorbents of inorganic ion-exchangers and polyacrylonitrile binding matrix. J Radioanal Nucl Chem 220:77–88

    Article  CAS  Google Scholar 

  18. Suleyman S, Altas Y (2011) Preparation of zirconium–manganese oxide/polyacrylonitrile (Zr–Mn oxide/PAN) composite spheres and the investigation of Sr (II) sorption by experimental design. Chem Eng J 168:1263–1271

    Article  Google Scholar 

  19. Park Y, Lee Y-C, Shin WS, Choi S-J (2010) Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chem Eng J 162:685–695

    Article  CAS  Google Scholar 

  20. Nilchi A, Saberi R, Moradi M, Azizpour H, Zarghami R (2010) Evaluation of AMP–PAN composite for adsorption of Cs+ ions from aqueous solution using batch and fixed bed operations. J Radioanal Nucl Chem 292:609–617

    Article  Google Scholar 

  21. Moon J-K, Kim K-W, Jung C-H, Shul Y-G, Lee E-H (2000) Preparation of organic-inorganic composite adsorbent beads for removal of radionuclides and heavy metal ions. J Radioanal Nucl Chem 246:299–307

    Article  CAS  Google Scholar 

  22. Deng Q, Li M, Cheng Z (2008) Research on polyantimonic acid synthesis and adsorption for strontium. Nucl Powder Eng 29(5):142–145

  23. Dwivedi C, Kumar A, Singh KK, Juby AK, Kumar M, Wattal PK, Bajaj PN (2013) Copper hexacyanoferrate-polymer composite beads for cesium ion removal: synthesis, characterization, sorption, and kinetic studies. J Appl Polym. doi:10.1002/APP.38707

    Google Scholar 

  24. Colomban P, Doremieux-Morin C (1989) Equilibrium between protonic species and conductivity mechanism in antimonic acid, H2Sb4O11·nH2O. J Mol Struct 213:83–96

    Article  CAS  Google Scholar 

  25. Sureshkumar MK, Das D, Mallia MB, Gupta PC (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72

    Article  CAS  Google Scholar 

  26. Das D, Das N, Mathew L (2010) Kinetics equilibrium and thermodynamic studies on biosorption of Ag(I) from aqueous solution by macrofungus Pleurotus platypus. J Hazard Mater 184:765–774

    Article  CAS  Google Scholar 

  27. Sivaiah MV, Venkatesan KA, Krishna RM, Sasidharb P, Murthy GS (2005) Ion exchange properties of strontium on in situ precipitated polyantimonic acid in amberlite XAD-7. Sep Purif Technol 44:1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by both the “Strategic Priority Research Program” of the Chinese Academy of Sciences, Grant No. XDA02030000 and National Natural Science Foundation of China (11305244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Shi, W., Meng, H. et al. Preparation, characterization and ion-exchange behavior of polyantimonic acid-polyacrylonitrile (PAA–PAN) composite beads for strontium(II). J Radioanal Nucl Chem 308, 155–163 (2016). https://doi.org/10.1007/s10967-015-4293-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4293-0

Keywords

Navigation