Skip to main content
Log in

NAA and XRF technique bottom sediment assessment for major and trace elements: Tietê River, São Paulo State, Brazil

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The concentration and distribution of selected trace and major elements, in river bottom sediments (12 sites) along the Tietê River basin were investigated. Total concentration for major by XRF and trace by INAA elements were determined. Physicochemical parameters pH, DO, Eh and conductivity were measured and discussed. Enrichment factor, geoaccumulation index, TEL and PEL criteria used to assess contamination levels allowed to classify the river as: less polluted (sites 1A, 1B—headwaters), more polluted (sites 2A–3C—after crossing São Paulo county) and moderately polluted (sites 4, 5, 6 and 7—far from São Paulo city).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nascimento MRL, Mozeto AA (2008) Soil Sediment Contam 17:269–278

    Article  CAS  Google Scholar 

  2. Alegre GF (2009). Avaliação Toxicológica de sedimentos do Rio Tietê entre os municípios de Salesópolis e Suzano. SP. Master of Sciences. IPEN–USP. p 97

  3. Astudillo LR, Yen IC, Bekele I (2005) Rev Biol Trop 53:41–53

    Google Scholar 

  4. Kamaruzzaman BY, Rina Z, John AB, Jalal KCA (2011) Res. J Environ Sci 108:1–14

    Google Scholar 

  5. Favaro DIT, Alegre GF, Borrely SI, Vukan W, Vieira AS, Oliveira SMB (2014) J Radioanal Nucl Chem 299(1):797–805

    Article  CAS  Google Scholar 

  6. Silva IS, Abate G, Lichtig J, Masini JC (2002) Appl Geochem 17:105–116

    Article  Google Scholar 

  7. Mortatti J, Oliveira H, Moraes GM, Vendramini D, Fernandes AM (2013) Chem Speciat Bioavailab 25(3):194–200

    Article  CAS  Google Scholar 

  8. Mortatti J, Probst JL (2010) Rev Brasileira Geociênc 40(3):375–379

    Google Scholar 

  9. Mortatti J, Moraes GM, Probst JL (2012) Geochem J 46(3):13–19

    Article  CAS  Google Scholar 

  10. Rodgher S, Espíndola ELG, Rocha O, Fracácio R, Pereira RHG, Rodrigues MHS (2005) Braz J Biol 65(4):697–710

    Article  CAS  Google Scholar 

  11. Almeida CA, Rocha O (2006) J Braz Soc Ecotoxicol 1(2):141–145

    Article  Google Scholar 

  12. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, Oxford

    Google Scholar 

  13. CCME—Canadian Council of Ministers of the Environment (1999) Canadian environmental quality guidelines. Canadian protocol for the derivation of Canadian sediment quality guidelines for the protection of aquatic life. http://www.ccme.ca/en/resources/canadian_environmental_quality_guidelines/index.html. Accessed June 2015

  14. IPT—Instituto de Pesquisas Tecnológicas (1981) Mapa Geológico do Estado de São Paulo, São Paulo. V1 (IPT-Monografias)

  15. http://blogdoriotiete.blogspot.com.br/2009/02/os-4-trechos-do-rio-tiete_20.html. Accessed July 2014

  16. Camargo AO, Moniz AC, Jorge JA, Valadares JMAS (1986) Métodos de análise química e física de solos do IAC. Boletim Técnico, 106, Campinas, IAC, p 94

  17. Larizatti FE, Favaro DIT, Moreira SRD, Mazzilli BP, Piovano EL (2001) J Radioanal Nucl Chem 249(1):263–268

    Article  Google Scholar 

  18. Mori PE, Reeves S, Correia CT, Haukka M (1999) Rev Bras Geociênc 29(3):441–446

    CAS  Google Scholar 

  19. Govindaraju K (1989) Geostand Newsl 13:1–113

    Article  Google Scholar 

  20. CETESB (2013) Companhia Ambiental do Estado de São Paulo. Relatórios. http://www.cetesb.sp.gov.br/agua/aguas-superficiais/35-publicacoes-/-relatorios. Accessed July 2014

  21. Ndjigui PD, Abeng SAE, Ekomane E, Nzeukou AN, Mandeng FSN, Lindjeck MM (2015) J Afr Earth Sci 108:1–14

    Article  CAS  Google Scholar 

  22. Audry S, Schaefer J, Blanc G, Jousnneau JM (2004) Environ Pollut 132:413–426

    Article  CAS  Google Scholar 

  23. Gomes FC, Godoy JM, Godoy MLDP, Carvalho ZL, Lopes RT, Sanchez-Cabeza JA, Lacerda LD, Wasserman JC (2009) Mar Pollut Bull 59:123–133

    Article  Google Scholar 

  24. Zhang CL, Liu L (2002) Coast Shelf Sci 54:1051–1070

    Article  CAS  Google Scholar 

  25. Rocha PS, Azab E, Schmidt B, Storch V, Hollert H, Braunbeck T (2010) Environ Saf 73(4):550–558

    Article  Google Scholar 

  26. Qiao Y, Yang Y, Zhao J, Tao R, Xu R (2013) Environ Pollut 182:28–36

    Article  CAS  Google Scholar 

  27. Zahra A, Hashmi MZ, Malik RN, Ahmed Z (2014) Sci Total Environ 470–471(1):925–933

    Article  Google Scholar 

  28. Hamdoun H, Van-Veen E, Basset B, Lemoine M, Coggan J, Leleyter L, Baraud F (2015) Mar Pollut Bull 90(1–2):273–280

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Digimed Ind. e Comércio for its valuable help providing all the equipment used for in situ measurements as well as certified reference material for equipment calibration. The authors also wish to thank Claudio Giometi for his invaluable help in the sampling campaigns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. T. Fávaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, F.R., Silva, P.S.C., Castro, L.M. et al. NAA and XRF technique bottom sediment assessment for major and trace elements: Tietê River, São Paulo State, Brazil. J Radioanal Nucl Chem 306, 655–665 (2015). https://doi.org/10.1007/s10967-015-4261-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4261-8

Keywords

Navigation