Skip to main content

Mechanical and electrical properties of gamma-irradiated silane crosslinked polyethylene (Si-XLPE)

Abstract

Low-density polyethylene (LDPE)/silane compound was subjected to different treatments (thermal ageing, gamma irradiation) to improve its electrical and mechanical properties. Ageing at 80 °C for 90 days showed a decrease in tensile strength/breaking voltage, and an increase in leakage current. In contrast, gamma irradiation of LDPE/silane samples showed an augmentation in tensile strength/breaking voltage and a decrease in leakage current. Also, an improvement in the electrical properties was remarked after the thermal ageing. Irradiation of old polyethylene/silane insulated cables appeared as a good method to enhance its electrical and mechanical properties for further reusing.

This is a preview of subscription content, access via your institution.

Illustration 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Harper C, Sampson RM (1994) Handbook of electronic materials and process. McGraw-Hill, New York

    Google Scholar 

  2. Hjertberg T, Palmlof M, Sultan BA (1991) Chemical reactions in crosslinking of copolymers of ethylene and vinyltrimethoxy silane. J Appl Polym Sci 42:1185–1192

    Article  CAS  Google Scholar 

  3. Sultan BA, Palmlof M (1994) Advances in crosslinking technology plastics, rubber and composites, processing and applications. Plast Rubber Compos Pro 21:65–73

    CAS  Google Scholar 

  4. Briskman BA (2001) Radiation effects in thermal properties of polymers: an analytical review I. Polyethylene. Nucl Instrum Methods B 185:116–122

    Article  CAS  Google Scholar 

  5. Suarez JCM, Monteiro EEC, Mano EB (2002) Study of the effect of gamma irradiation on polyolefins low-density polyethylene. Polym Degrad Stab 75:143–151

    Article  CAS  Google Scholar 

  6. Wu T-S (Alchemix Pte Ltd) (2007) Silanecrosslinkable polyethylene compounds: applications and manufacturing methods. Plast Addit Compd 9(6):40–43

  7. Chen R, Bin Y, Nakano Y, Kurata N, Matsuo M (2010) Effect of chemical crosslinking on mechanical and electrical properties of ultrahigh-molecular-weight polyethylene-carbon fiber blends prepared by gelation/crystallization from solutions. Colloid Polym Sci 288:307–316

    Article  CAS  Google Scholar 

  8. Morshedian J, Hoseinpour PM (2009) Polyethylene cross-linking by two-step silane method: a review. Iran Polym J 18(2):103–128

    CAS  Google Scholar 

  9. Kuan H-C, Kuan J-F, Ma C-CM, Huang J-M (2005) Thermal and mechanical properties of silane-grafted water crosslinked polyethylene. J Appl Polym Sci 96:2383–2391

    Article  CAS  Google Scholar 

  10. Chemielewski AG, Haji-saeid M, Ahmad S (2005) Progress in radiation processing of polymers. Nucl Instrum Methods B 236:44–54

    Article  CAS  Google Scholar 

  11. Ziaie F, Borhani M, Mirjalili G, Bolourizadeh MA (2007) Effect of crystallinity on electrical properties of electron beam irradiated LDPE and HDPE. Radiat Phys Chem 76:1684–1687

    Article  CAS  Google Scholar 

  12. Barzin J, Azizi H, Morshedian J (2006) Preparation of silane-grafted and moisture cross-linked low density polyethylene: Part I: factors affecting performance of grafting and cross-linking. Polym Plast Technol Eng 45:979–983

    Article  CAS  Google Scholar 

  13. Shieh Y-T, Tsai T-H (1998) Silane grafting reactions of low-density polyethylene. J Appl Polym Sci 69:255–261

    Article  CAS  Google Scholar 

  14. Shah GB, Fuzail M, Anwar J (2004) Aspects of the crosslinking of polyethylene with vinyl silane. J Appl Polym Sci 92:3796–3803

    Article  CAS  Google Scholar 

  15. Dammert R, Gustafsson B, Sultan B-AK (1999) Polyethylene compatible sulphonic acids as silane crosslinking catalysts (USA) US Patent 6,005,055

  16. Blank WJ, Hessel ET, Abramshe RA (2002) Alkylaryl and arylalkylmonosulfonic acid catalysts for crosslinking polyethylene. (USA) US Patent 6,441,097

  17. Morshedian J, Hoseinpour PM, Azizi H, Parvizzad R (2009) Effect of polymer structure and additives on silane grafting of polyethylene. Express Polym Lett 3(2):105–115

    Article  CAS  Google Scholar 

  18. Azizi H, Barzin J, Morshedian J (2007) Silane crosslinking of polyethylene: the effects of EVA, ATH and Sb2O3 on properties of the production in continuous grafting of LDPE. Express Polym Lett 1(6):378–384

    Article  CAS  Google Scholar 

  19. Sirisinha K, Boonkongkaew M, Kositchaiyong S (2010) The effect of silane carriers on silane grafting of high-density polyethylene and properties of crosslinked products. Polym Test 29:958–965

    Article  CAS  Google Scholar 

  20. Azizi H, Morshedian J, Barikani M, Wagner MH (2011) Correlation between molecular structure parameters and network properties of silane-grafted and moisture cross-linked polyethylenes. Adv Polym Technol 30(4):286–300

    Article  CAS  Google Scholar 

  21. Zong R, Wang Z, Liu N, Hu Y, Liao G (2005) Thermal degradation kinetics of polyethylene and silane-crosslinked. J Appl Polym Sci 98:1172–1179

    Article  CAS  Google Scholar 

  22. Schimtz JV, Lawton EJ (1959) Process for applying protective coatings by means of high energy electrons. (USA) US Patent 2,900,277

  23. Abdel Tawab K, Ibrahim SM, Magida MM (2013) The effect of gamma irradiation on mechanical, and thermal properties of recycling polyethylene terephthalate and low density polyethylene (R-PET/LDPE) blend compatibilized by ethylene vinyl acetate (EVA). J Radioanal Nucl Chem 295(2):1313–1319

    Article  CAS  Google Scholar 

  24. Siri-Upathum C, Punnachaiya S (2007) Radiation cross-linking of small electrical wire insulator fabricated from NR/LDPE blends. Nucl Instrum Methods B 265:09–113

    Article  CAS  Google Scholar 

  25. Al-Ali M, Madi NK, Al Thani NJ, El-Muraikhi M, Turos A (2003) A mechanical and thermal properties of gamma irradiated polyethylene blends. Vacuum 70:227–236

    Article  CAS  Google Scholar 

  26. Huang X, Xie L, Jiang P, Wang G, Yin Y (2009) Morphology studies and ac electrical property of low density polyethylene/octavinyl polyhedral oligomericsilsesquioxane composite dielectrics. Eur Polym J 45:2172–2183

    Article  CAS  Google Scholar 

  27. Rihawy MS, Bakraji EH, Odeh A (2014) PIXE and GC–MS investigation for the determination of the chemical composition of Syrian Cuminum cyminum L. Appl Radiat Isot 86:118–125

    Article  CAS  Google Scholar 

  28. Goto T, Yamazaki T (2004) Recycling of Silane Cross-linked Polyethylene for Insulation of Cables using Supercritical Alcohol. Hitachi Cable Review. Aug, No 23

  29. Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2003) Degradation profile of polyethylene after artificial accelerated weathering. Polym Degrad Stab 79:385–397

    Article  CAS  Google Scholar 

  30. Nedjar M (2009) Effect of thermal aging on the electrical properties of crosslinked polyethylene. J Appl Polym Sci 111:1985–1990

    Article  CAS  Google Scholar 

  31. Sabet M, Hassan A, Ratnam CT (2012) Mechanical, electrical, and thermal properties of irradiated low-density polyethylene by electron beam. Polym Bull 68:2323–2339

    Article  CAS  Google Scholar 

  32. Singh A (1999) Irradiation of polyethylene: some aspects of crosslinking and oxidative degradation. Radiat Phys Chem 56:375–380

    Article  CAS  Google Scholar 

  33. Huang X, Kim C, Jiang P (2011) Effects of high-dose gamma ray irradiation on the physicochemical properties and water-treeing deterioration of cross-linked polyethylene cable insulation. IEEE Electr Insul Mag 27(4):17–25

    Article  Google Scholar 

  34. Ieda M, Nagao M, Hikita M (1994) High-field conduction and breakdown in insulating polymers. Present situation and future prospects. IEEE Trans Dielectr Electr Insul 1:934–945

    Article  CAS  Google Scholar 

  35. Clough RL, Gillen KT (1981) Radiation-thermal degradation of PE and PVC: mechanism of synergism and dose rate effects. Radiat Phys Chem 18(3–4):661–669

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the DG of the AECS for his encouragement. Thanks are also due to Mr. Khan, and Mr. Dawood for their efforts during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Aljoumaa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aljoumaa, K., Ajji, Z. Mechanical and electrical properties of gamma-irradiated silane crosslinked polyethylene (Si-XLPE). J Radioanal Nucl Chem 307, 1391–1399 (2016). https://doi.org/10.1007/s10967-015-4236-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4236-9

Keywords

  • Polyethylene/silane
  • Thermal ageing
  • Gamma irradiation
  • Tensile strength
  • Breaking voltage