Skip to main content
Log in

Effect of the irradiation dose on the luminescence emission of a Mg-rich phyllosilicate

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This paper reports on the thermoluminescence and cathodoluminescence behaviour of a well-characterized sepiolite (Si12Mg8O30(OH)4(OH2)4·8H2O). Both natural and induced thermoluminescence curves display a complex emission suggesting a continuum in the trap distribution involving multiorder kinetics. UV–IR cathodoluminescence spectral emission shows five wavebands at 330, 400 and 440 (associated with structural defects, [AlO4] or non-bridging oxygen hole centers) and 520 and 770 nm (linked to point defects). This daily-use material, that is of interest since could be employed for personal dosimetry in the case of radiation accident or radiological terrorism where conventional monitoring has not been established, were never investigated before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Murray HH (2007) Applied clay mineralogy. Elsevier, The Netherlands

    Google Scholar 

  2. Alvarez A, Santarem J, Esteban-Cubillo A, Aparicio P (2011) In: Galán E, Singer A (eds) Developments in palygorskite–sepiolite Research: a new look at these materials, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  3. Hitzky ER, Aranda P, Alvarez A, Santarem J, Esteban-Cubillo A (2011) In: Galán E, Singer A (eds) Developments in palygorskite–sepiolite Research. A new look at these materials, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  4. Rodriguez-Lazcano Y, Correcher V, Garcia-Guinea J (2013) Thermo- and cathodoluminescence properties of lepidolite. Spectrochim Acta A 113:281–285

    Article  CAS  Google Scholar 

  5. Garcia-Guinea J, Correcher V, Rodriguez-Lazcano Y, Crespo-Feo E, Prado-Herrero P (2010) Light emission bands in the radioluminescence and thermoluminescence spectra of kaolinite. Appl Clay Sci 49:306–310

    Article  CAS  Google Scholar 

  6. Correcher V, Garcia-Guinea J, Crespo-Feo E, Rodriguez-Lazcano Y, Prado-Herrero P (2010) Dose–response of thermoluminescence in natural kaolinite. Thermochim Acta 503–504:12–15

    Article  Google Scholar 

  7. Bulur E (2008) Preliminary OSL studies on beige sepiolites. Radiat Prot Dosim 131(3):390–393

    Article  CAS  Google Scholar 

  8. McKeever SWS (1985) Thermoluminescence of solids. Cambridge University Press, New York

    Book  Google Scholar 

  9. Kalceff MAS, Phillips MR (1995) Cathodoluminescence microcharacterization of the defect structure of quartz. Phys Rev B 52(5):3122–3134

    Article  CAS  Google Scholar 

  10. Correcher V, Garcia-Guinea J (2001) On the luminescence properties of adularia feldspar. J Lumin 93:303–312

    Article  CAS  Google Scholar 

  11. Sanchez del Rio M, García-Romero E, Suarez M, da Silva I, Fuentes-Montero L, Martínez-Criado G (2011) Variability in sepiolite: diffraction studies. Am Miner 96:1443–1454

    Article  CAS  Google Scholar 

  12. Brauner K, Presinger A (1956) Struktur und Entstehung des Sepioliths. Tschermak’s Miner Petrogr Mitt. 6(1–2):120–140

    Article  CAS  Google Scholar 

  13. Suarez M, Garcia-Romero E (2012) Variability of the surface properties of sepiolite. Appl Clay Sci 67–68:72–82

    Article  Google Scholar 

  14. Garcia-Romero E, Suarez M (2013) Sepiolite–palygorskite: textural study and genetic considerations. Appl Clay Sci 86:129–144

    Article  CAS  Google Scholar 

  15. Yalcin H, Bozkaya O (2011) In: Galán E, Singer A (eds) Developments in palygorskite–sepiolite Research. A new outlook on these nanomaterials. Developments in clay science, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  16. Galán E, Pozo M (2011) In: Galán E, Singer A (eds) Developments in palygorskite–sepiolite Research. A new outlook on these nanomaterials. Developments in clay science, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  17. Bøtter-Jensen L, Duller GAT (1992) A new system for measuring optically stimulated luminescence from quartz samples. Nucl Tracks Radiat Meas Part D 20:549–553

    Article  Google Scholar 

  18. Correcher V, Delgado A (1998) On the use of natural quartz as transfer dosemeter in retrospective dosimetry. Radiat Meas 29:411–414

    Article  CAS  Google Scholar 

  19. Garcia-Guinea J, Correcher V (2000) Luminescence spectra of alkali feldspars: influence of crushing on the ultraviolet emission band. Spectrosc Lett 33:103–113

    Article  CAS  Google Scholar 

  20. Garcia-Romero E, Suarez M (2014) Sepiolite-palygorskite polysomatic series: oriented aggregation as a crystal growth mechanism in natural environments. Am Miner 99:1653–1661

    Article  Google Scholar 

  21. Tauler E, Proenza JA, Gali S, Lewis JF, Labrador M, Garcia-Romero E, Suarez M, Longo F, Bloise G (2009) Ni-sepiolite-falcondoite in garnierite mineralization from the Falcondo Ni-laterite deposit, Dominican Republic. Clay Miner 44:435–454

    Article  CAS  Google Scholar 

  22. Post JE, Bish DL, Heaney PJ (2007) Synchrotron powder X-ray diffraction Study of the structure and dehydration behavior of sepiolite. Am Miner. 92:91–97

    Article  CAS  Google Scholar 

  23. Miura A, Nakazawa K, Takei T, Kumada N, Kinomura N, Ohki R, Koshiyama H (2012) Acid-, base-, and heat-induced degradation behavior of Chinese sepiolite. Ceram Int 38:4677–4684

    Article  CAS  Google Scholar 

  24. Correcher V, Garcia-Guinea J, Martin-Fernandez C, Can N (2011) Thermal effect on the cathodo- and thermoluminescence emission of natural topaz (Al2SiO4(F, OH)2). Spectrosc Lett 44:486–489

    Article  CAS  Google Scholar 

  25. Garcia-Guinea J, Correcher V, Sanchez-Munoz L, Finch AA, Hole DE, Townsend PD (2007) On the luminescence emission band at 340 nm of stressed tectosilicate lattices. Nucl Instrum Methods A 580:648–651

    Article  CAS  Google Scholar 

  26. Gorobets BS, Grojine AA (2002) Luminescent spectra of minerals. RPC VIMS, Moscow

    Google Scholar 

  27. Itoh N, Stoneham D, Stoneham AM (2002) Ionic and electronic processes in quartz: mechanisms of thermoluminescence and optically stimulated luminescence. J Appl Phys 92:5036–5044

    Article  CAS  Google Scholar 

  28. Martini M, Paleari A, Spinolo G, Vedda A (1995) Role of [AlO4]° centers in the 380 nm thermoluminescence of quartz. Phys Rev B 52:138–142

    Article  CAS  Google Scholar 

  29. Sanchez-Munoz L, Correcher V, Garcia-Guinea J, Delgado A (2007) Luminescence at 400 and 440 nm in sanidine feldspar from original and X-ray-induced defects. Nucl Instrum Methods A 580:679–682

    Article  CAS  Google Scholar 

  30. Speit B, Lehmann G (1982) A comparative study of thermoluminescence and isothermal destruction of radiation defects in feldspars. J Lumin 27:127–136

    Article  CAS  Google Scholar 

  31. Thurkhin AN (1992) Excitons in SiO2—a review. J Non-Cryst Solids 149(1–2):32–45

    Article  Google Scholar 

  32. Garcia-Guinea J, Correcher V, Rodriguez-Badiola E (2001) Analysis of luminescence spectra of leucite (KAISiO4). Analyst 126:911–916

    Article  CAS  Google Scholar 

  33. Prescott JR, Fox PJ (1993) 3-dimensional thermoluminescence spectra of feldspars. J Phys D 26:2245–2254

    Article  CAS  Google Scholar 

  34. Garcia-Guinea J, Fernandez-Cortes A, Alvarez-Gallego M, Garcia-Anton E, Casas-Ruiz M, Blazquez-Perez D, Teijon O, Cuezva S, Correcher V, Sanchez-Moral S (2013) Leaching of uranyl-silica complexes from the host metapelite rock favoring high radon activity of subsoil air: case of Castañar cave (Spain). J Radioanal Nucl Chem 298:1567–1585

    Article  CAS  Google Scholar 

  35. Gomez-Gonzalez MA, Garcia-Guinea J, Garrido F, Townsend PD, Marco JF (2015) Thallium and manganese complexes involved in the luminescence emission of potassium-bearing aluminosilicates. J Lumin 159:197–206

    Article  CAS  Google Scholar 

  36. Krbetschek MR, Goetzes J, Dietrich A, Trautmann T (1997) Spectral information from minerals relevant for luminescence dating. Radiat Meas 27:695–748

    Article  CAS  Google Scholar 

  37. Faye GH (1969) The optical absorption spectrum of tetrahedrally bonded Fe3+ in orthoclase. Can Mineral 10:112–117

    CAS  Google Scholar 

  38. Poolton NRJ, Bøtter-Jensen L, Johnsen O (1996) On the relationship between luminescence excitation spectra and feldspar mineralogy. Radiat Meas 26(1):93–101

    Article  CAS  Google Scholar 

  39. Correcher V, Sanchez-Munoz L, Garcia-Guinea J, Delgado A (2007) Natural blue thermoluminescence emission of the recently fallen meteorite in Villalbeto de la Peña (Spain). Nucl Instrum Methods A 580:637–640

    Article  CAS  Google Scholar 

  40. Chen R, McKeever SWS (1997) Theory of Thermoluminescence and Related Phenomena. World Scientific Publishing, Singapore

    Book  Google Scholar 

  41. Gonzalez PR, Furetta C, Marcazzo J, Cruz-Zaragoza E, Cruz LP (2013) Determination of kinetics parameters of the main glow peaks for KMgF3: lu and LiF: Mg phosphors after long-term high temperature storage. Appl Radiat Isot 79:67–72

    Article  CAS  Google Scholar 

  42. Furetta C, Guzman S, Ruiz B, Cruz-Zaragoza E (2011) The initial rise method extended to multiple trapping levels in thermoluminescent materials. Appl Radiat Isot 69:346–349

    Article  CAS  Google Scholar 

  43. Correcher V, Gomez-Ros JM, Garcia-Guinea J (2004) Radiation effect on the 400 nm-thermoluminescence emission of a potassium rich feldspar. Radiat Meas 38(4–6):689–693

    Article  CAS  Google Scholar 

  44. Garcia-Guinea J, Pitalua F, Correcher V, Sanchez-Munoz L, Valle-Fuentes FJ, Lopez-Arce P (2004) Thermoluminescent properties of an albite from Minas Gerais (Brazil). Bol Soc Esp Ceram 43(2):115–118

Download references

Acknowledgments

This work was partially supported by the CNPQ, program Ciências sem Fronteiras (238437/2013-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Correcher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correcher, V., Rodriguez-Lazcano, Y., Gomesdarocha, R. et al. Effect of the irradiation dose on the luminescence emission of a Mg-rich phyllosilicate. J Radioanal Nucl Chem 307, 1287–1293 (2016). https://doi.org/10.1007/s10967-015-4229-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4229-8

Keywords

Navigation