Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 2, pp 1287–1293 | Cite as

Effect of the irradiation dose on the luminescence emission of a Mg-rich phyllosilicate

  • V. Correcher
  • Y. Rodriguez-Lazcano
  • R. Gomesdarocha
  • J. Garcia-Guinea
Article
  • 152 Downloads

Abstract

This paper reports on the thermoluminescence and cathodoluminescence behaviour of a well-characterized sepiolite (Si12Mg8O30(OH)4(OH2)4·8H2O). Both natural and induced thermoluminescence curves display a complex emission suggesting a continuum in the trap distribution involving multiorder kinetics. UV–IR cathodoluminescence spectral emission shows five wavebands at 330, 400 and 440 (associated with structural defects, [AlO4] or non-bridging oxygen hole centers) and 520 and 770 nm (linked to point defects). This daily-use material, that is of interest since could be employed for personal dosimetry in the case of radiation accident or radiological terrorism where conventional monitoring has not been established, were never investigated before.

Keywords

Sepiolite Thermoluminescence Cathodoluminescence Accidental dosimetry 

References

  1. 1.
    Murray HH (2007) Applied clay mineralogy. Elsevier, The NetherlandsGoogle Scholar
  2. 2.
    Alvarez A, Santarem J, Esteban-Cubillo A, Aparicio P (2011) In: Galán E, Singer A (eds) Developments in palygorskite–sepiolite Research: a new look at these materials, 1st edn. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Hitzky ER, Aranda P, Alvarez A, Santarem J, Esteban-Cubillo A (2011) In: Galán E, Singer A (eds) Developments in palygorskite–sepiolite Research. A new look at these materials, 1st edn. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Rodriguez-Lazcano Y, Correcher V, Garcia-Guinea J (2013) Thermo- and cathodoluminescence properties of lepidolite. Spectrochim Acta A 113:281–285CrossRefGoogle Scholar
  5. 5.
    Garcia-Guinea J, Correcher V, Rodriguez-Lazcano Y, Crespo-Feo E, Prado-Herrero P (2010) Light emission bands in the radioluminescence and thermoluminescence spectra of kaolinite. Appl Clay Sci 49:306–310CrossRefGoogle Scholar
  6. 6.
    Correcher V, Garcia-Guinea J, Crespo-Feo E, Rodriguez-Lazcano Y, Prado-Herrero P (2010) Dose–response of thermoluminescence in natural kaolinite. Thermochim Acta 503–504:12–15CrossRefGoogle Scholar
  7. 7.
    Bulur E (2008) Preliminary OSL studies on beige sepiolites. Radiat Prot Dosim 131(3):390–393CrossRefGoogle Scholar
  8. 8.
    McKeever SWS (1985) Thermoluminescence of solids. Cambridge University Press, New YorkCrossRefGoogle Scholar
  9. 9.
    Kalceff MAS, Phillips MR (1995) Cathodoluminescence microcharacterization of the defect structure of quartz. Phys Rev B 52(5):3122–3134CrossRefGoogle Scholar
  10. 10.
    Correcher V, Garcia-Guinea J (2001) On the luminescence properties of adularia feldspar. J Lumin 93:303–312CrossRefGoogle Scholar
  11. 11.
    Sanchez del Rio M, García-Romero E, Suarez M, da Silva I, Fuentes-Montero L, Martínez-Criado G (2011) Variability in sepiolite: diffraction studies. Am Miner 96:1443–1454CrossRefGoogle Scholar
  12. 12.
    Brauner K, Presinger A (1956) Struktur und Entstehung des Sepioliths. Tschermak’s Miner Petrogr Mitt. 6(1–2):120–140CrossRefGoogle Scholar
  13. 13.
    Suarez M, Garcia-Romero E (2012) Variability of the surface properties of sepiolite. Appl Clay Sci 67–68:72–82CrossRefGoogle Scholar
  14. 14.
    Garcia-Romero E, Suarez M (2013) Sepiolite–palygorskite: textural study and genetic considerations. Appl Clay Sci 86:129–144CrossRefGoogle Scholar
  15. 15.
    Yalcin H, Bozkaya O (2011) In: Galán E, Singer A (eds) Developments in palygorskite–sepiolite Research. A new outlook on these nanomaterials. Developments in clay science, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  16. 16.
    Galán E, Pozo M (2011) In: Galán E, Singer A (eds) Developments in palygorskite–sepiolite Research. A new outlook on these nanomaterials. Developments in clay science, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  17. 17.
    Bøtter-Jensen L, Duller GAT (1992) A new system for measuring optically stimulated luminescence from quartz samples. Nucl Tracks Radiat Meas Part D 20:549–553CrossRefGoogle Scholar
  18. 18.
    Correcher V, Delgado A (1998) On the use of natural quartz as transfer dosemeter in retrospective dosimetry. Radiat Meas 29:411–414CrossRefGoogle Scholar
  19. 19.
    Garcia-Guinea J, Correcher V (2000) Luminescence spectra of alkali feldspars: influence of crushing on the ultraviolet emission band. Spectrosc Lett 33:103–113CrossRefGoogle Scholar
  20. 20.
    Garcia-Romero E, Suarez M (2014) Sepiolite-palygorskite polysomatic series: oriented aggregation as a crystal growth mechanism in natural environments. Am Miner 99:1653–1661CrossRefGoogle Scholar
  21. 21.
    Tauler E, Proenza JA, Gali S, Lewis JF, Labrador M, Garcia-Romero E, Suarez M, Longo F, Bloise G (2009) Ni-sepiolite-falcondoite in garnierite mineralization from the Falcondo Ni-laterite deposit, Dominican Republic. Clay Miner 44:435–454CrossRefGoogle Scholar
  22. 22.
    Post JE, Bish DL, Heaney PJ (2007) Synchrotron powder X-ray diffraction Study of the structure and dehydration behavior of sepiolite. Am Miner. 92:91–97CrossRefGoogle Scholar
  23. 23.
    Miura A, Nakazawa K, Takei T, Kumada N, Kinomura N, Ohki R, Koshiyama H (2012) Acid-, base-, and heat-induced degradation behavior of Chinese sepiolite. Ceram Int 38:4677–4684CrossRefGoogle Scholar
  24. 24.
    Correcher V, Garcia-Guinea J, Martin-Fernandez C, Can N (2011) Thermal effect on the cathodo- and thermoluminescence emission of natural topaz (Al2SiO4(F, OH)2). Spectrosc Lett 44:486–489CrossRefGoogle Scholar
  25. 25.
    Garcia-Guinea J, Correcher V, Sanchez-Munoz L, Finch AA, Hole DE, Townsend PD (2007) On the luminescence emission band at 340 nm of stressed tectosilicate lattices. Nucl Instrum Methods A 580:648–651CrossRefGoogle Scholar
  26. 26.
    Gorobets BS, Grojine AA (2002) Luminescent spectra of minerals. RPC VIMS, MoscowGoogle Scholar
  27. 27.
    Itoh N, Stoneham D, Stoneham AM (2002) Ionic and electronic processes in quartz: mechanisms of thermoluminescence and optically stimulated luminescence. J Appl Phys 92:5036–5044CrossRefGoogle Scholar
  28. 28.
    Martini M, Paleari A, Spinolo G, Vedda A (1995) Role of [AlO4]° centers in the 380 nm thermoluminescence of quartz. Phys Rev B 52:138–142CrossRefGoogle Scholar
  29. 29.
    Sanchez-Munoz L, Correcher V, Garcia-Guinea J, Delgado A (2007) Luminescence at 400 and 440 nm in sanidine feldspar from original and X-ray-induced defects. Nucl Instrum Methods A 580:679–682CrossRefGoogle Scholar
  30. 30.
    Speit B, Lehmann G (1982) A comparative study of thermoluminescence and isothermal destruction of radiation defects in feldspars. J Lumin 27:127–136CrossRefGoogle Scholar
  31. 31.
    Thurkhin AN (1992) Excitons in SiO2—a review. J Non-Cryst Solids 149(1–2):32–45CrossRefGoogle Scholar
  32. 32.
    Garcia-Guinea J, Correcher V, Rodriguez-Badiola E (2001) Analysis of luminescence spectra of leucite (KAISiO4). Analyst 126:911–916CrossRefGoogle Scholar
  33. 33.
    Prescott JR, Fox PJ (1993) 3-dimensional thermoluminescence spectra of feldspars. J Phys D 26:2245–2254CrossRefGoogle Scholar
  34. 34.
    Garcia-Guinea J, Fernandez-Cortes A, Alvarez-Gallego M, Garcia-Anton E, Casas-Ruiz M, Blazquez-Perez D, Teijon O, Cuezva S, Correcher V, Sanchez-Moral S (2013) Leaching of uranyl-silica complexes from the host metapelite rock favoring high radon activity of subsoil air: case of Castañar cave (Spain). J Radioanal Nucl Chem 298:1567–1585CrossRefGoogle Scholar
  35. 35.
    Gomez-Gonzalez MA, Garcia-Guinea J, Garrido F, Townsend PD, Marco JF (2015) Thallium and manganese complexes involved in the luminescence emission of potassium-bearing aluminosilicates. J Lumin 159:197–206CrossRefGoogle Scholar
  36. 36.
    Krbetschek MR, Goetzes J, Dietrich A, Trautmann T (1997) Spectral information from minerals relevant for luminescence dating. Radiat Meas 27:695–748CrossRefGoogle Scholar
  37. 37.
    Faye GH (1969) The optical absorption spectrum of tetrahedrally bonded Fe3+ in orthoclase. Can Mineral 10:112–117Google Scholar
  38. 38.
    Poolton NRJ, Bøtter-Jensen L, Johnsen O (1996) On the relationship between luminescence excitation spectra and feldspar mineralogy. Radiat Meas 26(1):93–101CrossRefGoogle Scholar
  39. 39.
    Correcher V, Sanchez-Munoz L, Garcia-Guinea J, Delgado A (2007) Natural blue thermoluminescence emission of the recently fallen meteorite in Villalbeto de la Peña (Spain). Nucl Instrum Methods A 580:637–640CrossRefGoogle Scholar
  40. 40.
    Chen R, McKeever SWS (1997) Theory of Thermoluminescence and Related Phenomena. World Scientific Publishing, SingaporeCrossRefGoogle Scholar
  41. 41.
    Gonzalez PR, Furetta C, Marcazzo J, Cruz-Zaragoza E, Cruz LP (2013) Determination of kinetics parameters of the main glow peaks for KMgF3: lu and LiF: Mg phosphors after long-term high temperature storage. Appl Radiat Isot 79:67–72CrossRefGoogle Scholar
  42. 42.
    Furetta C, Guzman S, Ruiz B, Cruz-Zaragoza E (2011) The initial rise method extended to multiple trapping levels in thermoluminescent materials. Appl Radiat Isot 69:346–349CrossRefGoogle Scholar
  43. 43.
    Correcher V, Gomez-Ros JM, Garcia-Guinea J (2004) Radiation effect on the 400 nm-thermoluminescence emission of a potassium rich feldspar. Radiat Meas 38(4–6):689–693CrossRefGoogle Scholar
  44. 44.
    Garcia-Guinea J, Pitalua F, Correcher V, Sanchez-Munoz L, Valle-Fuentes FJ, Lopez-Arce P (2004) Thermoluminescent properties of an albite from Minas Gerais (Brazil). Bol Soc Esp Ceram 43(2):115–118Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • V. Correcher
    • 1
  • Y. Rodriguez-Lazcano
    • 1
  • R. Gomesdarocha
    • 1
  • J. Garcia-Guinea
    • 2
  1. 1.CIEMATMadridSpain
  2. 2.CSIC. Museo Nacional Ciencias NaturalesMadridSpain

Personalised recommendations