Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 306, Issue 3, pp 685–694 | Cite as

Transfer of uranium and radium to Chinese cabbage from soil containing elevated levels of natural radionuclides

  • Borut Smodiš
  • Marko Černe
  • Radojko Jaćimović
  • Ljudmila Benedik
Article

Abstract

The transfer of 238U and 226Ra to Chinese cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt) was investigated from soils contaminated with uranium-mill tailings (UMT) by means of a pot experiment in laboratory-based conditions applying different levels of soil contamination under various growing conditions. Activity concentrations for 226Ra in Chinese cabbage varied from 56–276, 156–502 and 277–877 Bq kg−1 dry mass for 20, 40 and 60 % of UMT content in the soil, respectively, and for 238U from 1.0–2.3 and 2.3–4.7 Bq kg−1 dry mass for 40 and 60 % of UMT content in the soil, respectively. The results showed increased accumulation of 226Ra and low accumulation of 238U in cabbage leaves in more contaminated soil.

Keywords

Chinese cabbage 238226Ra Transfer U-mill tailings Soil properties 

Notes

Acknowledgments

This work was financially supported by the Slovenian Research Agency (contract No. P2-0075). The authors would like to thank Mr. Jože Rojc of the Rudnik Žirovski vrh company for his cooperation and the Centre for Pedology of the Agronomy Department, Biotechnical faculty, University of Ljubljana, for soil characteristics determination.

References

  1. 1.
    Benedik L, Klemenčič H, Repinc U, Vreček P (2003) Uranium and its decay products in samples contaminated with uranium mine and mill wastes. J Phys IV France 107:147–150CrossRefGoogle Scholar
  2. 2.
    Stegnar P, Shishkov I, Burkitbayev M, Tolongutov B, Yunsov M, Radyuk R, Salbu B (2012) Assessment of the radiological impact of gamma and radon dose rates at former U mining sites in Central Asia. J Environ Radioact 123:3–13CrossRefGoogle Scholar
  3. 3.
    Vandenhove H, Sweeck L, Mallants D, Vanmarcke H, Aitkulov A, Sadyrov O, Savosin M, Tolongutov B, Mirzachev M, Clerc JJ, Quarch H, Aitaliev A (2006) Assessment of radiation exposure in the uranium mining and milling area of Mailuu Suu, Kyrgyzstan. J Environ Radioact 88:118–139CrossRefGoogle Scholar
  4. 4.
    Štrok M, Smodiš B (2010) Fractionation of natural radionuclides in soils from the vicinity of a former uranium mine Žirovski vrh, Slovenia. J Environ Radioact 101:22–28CrossRefGoogle Scholar
  5. 5.
    Tamponnet C, Martin-Garin A, Gonze M-A, Parekh N, Vallejo R, Sauras-Year T, Casadesus J, Plassard C, Staunton S, Norden M, Avila R, Shaw G (2008) An overview of BORIS: bioavailability of radionuclides in soil. J Environ Radioact 99:820–830CrossRefGoogle Scholar
  6. 6.
    Parekh NR, Poskitt JM, Dodd BA, Potter ED, Sanchez A (2008) Soil microorganisms determine the sorption of radionuclides within organic soil systems. J Environ Radioact 99:841–852CrossRefGoogle Scholar
  7. 7.
    Shahandeh H, Hossner LR (2002) Role of soil properties in phytoaccumulation of uranium. Water Air Soil Pollut 141:165–180CrossRefGoogle Scholar
  8. 8.
    Vandenhove H, Van Hees M (2007) Predicting radium availability and uptake from soil properties. Chemosphere 69:664–674CrossRefGoogle Scholar
  9. 9.
    Ehlken S, Kirchner G (2002) Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. J Environ Radioact 58:97–112CrossRefGoogle Scholar
  10. 10.
    Colle C, Mandoz-Escande C, Leclerc E (2009) Foliar transfer into the biosphere: a review of translocation factors to cereal grains. J Environ Radioact 100:683–689CrossRefGoogle Scholar
  11. 11.
    Pröhl G (2009) Interception of dry and wet deposited radionuclides by vegetation. J Environ Radioact 100:675–682CrossRefGoogle Scholar
  12. 12.
    Greger M (2008) In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, New JerseyGoogle Scholar
  13. 13.
    Černe M, Smodiš B, Štrok M, Jaćimović R (2010) Accumulation of 238U, 226Ra and 230Th by wetland plants in a vicinity of U-mill tailings at Žirovski vrh (Slovenia). J Radioanal Nucl Chem 286:323–327CrossRefGoogle Scholar
  14. 14.
    Štrok M, Smodiš B, Eler K (2011) Natural radionuclides in trees grown on a uranium mill tailings waste pile. Environ Sci Pollut Res 18:819–826CrossRefGoogle Scholar
  15. 15.
    Štrok M, Smodiš B (2013) Soil-to-plant transfer factors for natural radionuclides in grass in the vicinity of a former uranium mine. Nucl Eng Design 261:279–284CrossRefGoogle Scholar
  16. 16.
    Petrova R (2006) In: Merkel BJ, Hasche-Berger A (eds) Uranium in the environment. Springer, HeidelbergGoogle Scholar
  17. 17.
    Popa K, Tykva R, Podracká E, Humelnicu D (2008) 226Ra translocation from soil to selected vegetation in the Crucea (Romania) uranium mining area. J Radioanal Nucl Chem 278:211–213CrossRefGoogle Scholar
  18. 18.
    Madruga MJ, Brogueira A, Alberto G, Cardoso F (2001) 226Ra bioavailability to plants at the Uregiriça uranium mill tailings site. J Environ Radioact 54:175–188CrossRefGoogle Scholar
  19. 19.
    Tykva R, Podracká E (2005) Bioaccumulation of 226Ra in the plants growing near uranium facilities. Nukleonika 50:S25–S27Google Scholar
  20. 20.
    Carvalho FP, Oliveira JM, Neves MO, Abreu MM, Vicente EM (2009) Soil to plant (Solanum tuberosum L.) radionuclide transfer in the vicinity of an old uranium mine. Geochem Environ Anal 9:275–278CrossRefGoogle Scholar
  21. 21.
    Soudek P, Petrová Š, Benešová D, Kotyza J, Vágner M, Vaňkova R, Vanĕk T (2010) Study of soil-plant transfer of 226Ra under greenhouse conditions. J Environ Radioact 101:446–450CrossRefGoogle Scholar
  22. 22.
    Stojanović MD, Mihajlović ML, Milojković JV, Lopičić ZR, Adamović M, Stanković S (2012) Efficient phytoremediation of uranium mine tailings by tobacco. Environ Chem Lett 10:377–381CrossRefGoogle Scholar
  23. 23.
    Petrescu L, Bilal E (2003) Plant availabilty of uranium in contaminated soil from Crucea Mine (Romania). Environ Geosci 10(3):123–135CrossRefGoogle Scholar
  24. 24.
    Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32(13):2004–2008CrossRefGoogle Scholar
  25. 25.
    Ebbs SD, Brady DJ, Kochian LV (1998) Role of uranium speciation in the uptake and translocation of uranium by plants. J Exp Bot 49:1183–1190CrossRefGoogle Scholar
  26. 26.
    Duquène L, Vandenhove H, Tack F, Meers E, Baeten J, Wannijn J (2009) Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments. Sci Total Environ 407:1496–1505CrossRefGoogle Scholar
  27. 27.
    Choi M-S, Lin X-J, Lee S-A, Kim W, Kang H-D, Doh S-H, Kim D-S, Lee D-M (2008) Daily intakes of naturally occurring radioisotopes in typical Korean foods. J Environ Radioact 99:1319–1323CrossRefGoogle Scholar
  28. 28.
    Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17CrossRefGoogle Scholar
  29. 29.
    Križman M, Byrne AR, Benedik L (1995) Distribution of 230Th in milling wastes from the Žirovski vrh uranium mine (Slovenia) and its radioecological implications. J Environ Radioact 26:223–235CrossRefGoogle Scholar
  30. 30.
    Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40:586–593CrossRefGoogle Scholar
  31. 31.
    Taylor BN, Kuyatt CE (1994) NIST technical note 1297 guidelines for evaluating and expressing the uncertainty of NIST measurement results. U. S. Government Printing Office, WashingtonGoogle Scholar
  32. 32.
    Vidmar T (2005) EFFTRAN: a Monte Carlo efficiency transfer code for gamma-ray spectrometry. Nucl Instrum Methods A 550:603–608CrossRefGoogle Scholar
  33. 33.
    Gilmore GR (2008) Practical gamma-ray spectrometry. Wiley, EnglandCrossRefGoogle Scholar
  34. 34.
    Jovanović S, Dlabac A, Mihaljevic N (2010) ANGLE v2.1-New version of the computer code for semiconductor detector gamma-efficiency calculations. Nucl Instrum Methods A 622:385–391CrossRefGoogle Scholar
  35. 35.
    Jaćimović R (2003) Evaluation of the use of the TRIGA Mark II reactor for the k 0-method of activation analysis (in-Slovene), PhD Thesis, University of LjubljanaGoogle Scholar
  36. 36.
    HyperLab 2002 System (2002) Installation and quick start guide. HyperLabs Software, BudapestGoogle Scholar
  37. 37.
    Jaćimović R, Smodiš B, Bučar T, Stegnar P (2003) k 0-NAA quality assessment by analysis of different certified reference materials using the KAYZERO/SOLCOI software. J Radioanal Nucl Chem 257:659–663CrossRefGoogle Scholar
  38. 38.
    Kayzero for Windows (KayWin®), User’s Manual for reactor neutron activation analysis (NAA) using the k 0 standardization method, Version 2, November 2005Google Scholar
  39. 39.
    Biasioli M, Grčman H, Kralj T, Madrid F, Díaz-Barrientos E, Ajmone-Marsan F (2007) Potentially toxic elements contamination in urban soils: a comparison of three European cities. J Environ Qual 36:70–79CrossRefGoogle Scholar
  40. 40.
    Ajmone-Marsan F, Biasioli M, Kralj T, Grčman H, Davidson CM, Hursthouse AS, Madrid L, Rodrigues S (2008) Metals in particle-size fractions of the soils of five European cities. Environ Pollut 152:73–81CrossRefGoogle Scholar
  41. 41.
    Vodnik D, Grčman H, Maček I, van Elteren JT, Kovačevič M (2008) The contribution of glomalin related-soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136CrossRefGoogle Scholar
  42. 42.
    GENIE 2000 Spectroscopy Software: Customization Tools (2000) Canberra industries. GENIE 2000 Spectroscopy Software: Customization Tools, MeridenGoogle Scholar
  43. 43.
    Ann Peer W, Baxter IR, Richards EL, Freeman JL, Murphy AS (2005) In: Tamás MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification: topics in curent genetics. Springer, BerlinGoogle Scholar
  44. 44.
    Gerzabek MH, Strebl F, Temmel B (1998) Plant uptake of radionuclides in lysimeter experiments. Environ Pollut 99:93–103CrossRefGoogle Scholar
  45. 45.
    Tagami K, Uchida S (2009) 226Ra transfer factor from soils to crops and its simple estimation method using uranium and barium concentrations. Chemosphere 77:105–114CrossRefGoogle Scholar
  46. 46.
    White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Borut Smodiš
    • 1
    • 2
  • Marko Černe
    • 1
  • Radojko Jaćimović
    • 1
  • Ljudmila Benedik
    • 1
    • 2
  1. 1.Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.Jozef Stefan International Postgraduate SchoolLjubljanaSlovenia

Personalised recommendations