Skip to main content
Log in

Decomposition of uranyl peroxo-carbonato complex ion in the presence of metal oxides in carbonate media

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Uranium oxide was dissolved in the form of the uranyl peroxo-carbonato complex ion, UO2(O2)(CO3) 4−2 in carbonate solutions with hydrogen peroxide. When UO2(O2)(CO3) 4−2 ions lose their peroxide component, they become a stable species of uranyl tricarbonato complex ion, UO2(O2)(CO3) 4−2 . The uranyl peroxo-carbonato complex self-decomposed more rapidly into the uranyl tricarbonato complex ion in the presence of a metal oxide in the carbonate solution. In this study, decomposition of the uranyl peroxo-carbonato complex in a carbonate solution was investigated in the presence of several metal oxides using absorption spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim KW, Chung DY, Yang HB, Lim JK, Lee EH, Song KC, Song KS (2009) Nucl Technol 166:170–179

    Article  CAS  Google Scholar 

  2. Chung DY, Seo HS, Lee JW, Yang HB, Lee EH, Kim KW (2010) J Radioanal Nucl Chem 284:123–129

    Article  CAS  Google Scholar 

  3. Grenthe I, Fuger J, Konings RJ, Lemire RJ, Muller AB, Nguyen-Trung C, Wanner H (2004) Chemical thermodynamics of uranium. NEA OECD, Paris

    Google Scholar 

  4. Shoesmith DW (2000) J Nucl Mater 282:1–31

    Article  CAS  Google Scholar 

  5. Lee EH, Lim JK, Chung DY, Yang HB, Yoo JH, Kim KW (2009) J Radioanal Nucl Chem 281:339–346

    Article  CAS  Google Scholar 

  6. Del Cul GD, Toth LM, Bond WD, Williams DF (2000) Sep Sci Technol 35:2127–2141

    Article  Google Scholar 

  7. Debets PC (1963) J Inorg Nucl Chem 35:727–730

    Article  Google Scholar 

  8. Kubatko KAH, Helean KB, Navrotsky A, Burns PC (2003) Science 302:1191–1193

    Article  Google Scholar 

  9. Kim KW, Hyun JT, Lee EH, Park GI, Lee KW, Yoo MJ, Song KC, Moon JK (2011) J Nucl Mater 418:93–97

    Article  CAS  Google Scholar 

  10. Peper SM, Runde WH (2004) Ind Eng Chem Res 43:8188–8193

    Article  CAS  Google Scholar 

  11. Asanuma N, Harada M, Nogami M, Suzuki K, Kikuchi T, Tomiyasu H, Ikeda Y (2006) J Nucl Sci Technol 43:255–262

    Article  CAS  Google Scholar 

  12. Mason CFV, Turney WRJR, Thomson BM, Longmire NLuPA, Chisholm-Brause CJ (1997) Environ Sci Technol 31:2707–2711

    Article  CAS  Google Scholar 

  13. Gupta R, Pandey Pranesh SR, Chakravarty AB (2004) Hydrometallurgy 71:429–434

    Article  CAS  Google Scholar 

  14. Goff GS, Taw FL, Peper SM, Brodnax LF, Field SE, Runde WH (2006) AIChE 2006 Annual Meeting, San Francisco, pp 12–17

  15. Kirk RE, Othmer DF (1980) Encyclopedia of chemical technology, vol 12, 13, 3rd edn. Wiley, New York

    Google Scholar 

  16. Kim EH, Kim YH, Chung DY, Shin YJ, Yoo JH, Choi CS (1996) Hwahak Konghak 34:249–252

    CAS  Google Scholar 

  17. Kohler JT, Altomare RE, Kittrell JR (1975) Ind Eng Chem Prod Res Dev 14:36–40

    Article  CAS  Google Scholar 

  18. Venkatachalapathy R, Davila GP, Prakash J (1999) Electrochem Commun 1:614–617

    Article  CAS  Google Scholar 

  19. Abbot J, Brown DG (1990) Int J Chem Kinet 22:963–974

    Article  CAS  Google Scholar 

  20. Mani B, Mohan R, Rao VS (1980) React Kinet Catal Lett 13:277–284

    Article  CAS  Google Scholar 

  21. Hasan MA, Zaki MI, Pasupulety L, Kumari L (1999) Appl Catal A 181:171–179

    Article  CAS  Google Scholar 

  22. Shanahan KL (1978) The effect of Fe3+, Cr3+, Ni3+, and Mn2+ ions on decomposition of hydrogen peroxide solutions. SAND78-1778, Sandia Laboratories

  23. Kim KW, Lee KY, Chung DY, Lee EH, Moon JK (2012) J Hazard Mater 233–234:213–218

    Article  Google Scholar 

  24. Chung DY, Kim EH, Shin YJ, Yoo JH, Choi CS, Kim JD (1995) J Radioanal Nucl Chem Lett 201:495–507

    Article  CAS  Google Scholar 

  25. Mailen SC, Tallent OK, Arwood PC (1980) ORNL/TM-7474, Oak Ridge National Laboratory, Oak Ridge

  26. Andreozzi R, Caprio V, Insola A, Martota R (1999) Catal Today 53:51–59

    Article  CAS  Google Scholar 

  27. Salem IA, El-Maazawi M, Zaki AB (2000) Int J Chem Kinet 32:643–666

    Article  CAS  Google Scholar 

  28. Sieklucka B, Samotus A (1996) Transit Met Chem 21:226–230

    Article  CAS  Google Scholar 

  29. Thompson ME, Nash KL, Sullivan JC (1985) Isr J Chem 25:155–158

    Article  CAS  Google Scholar 

  30. Goff GS, Brodnax LF, Cisneros MR, Peper SM, Field SE, Scott BL, Runde WH (2008) Inorg Chem 47:1984–1990

    Article  CAS  Google Scholar 

  31. Kim KW, Jung EC, Lee KY, Cho HR, Lee EH, Chung DY (2012) J Phys Chem 116:12024–12031

    Article  CAS  Google Scholar 

  32. Zanonato PL, Bernardo PD, Grenther I (2012) Dalton Trans 41:3380–3386

    Article  CAS  Google Scholar 

  33. Zehnder R, Peper SM, Scott BL, Runde WH (2005) Acta Crystallogr Sect C C61:i3–i5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Research Foundation of Korea (NRF) Grants funded by the Korean government (MSIP) (No. NRF-2012M2A8A5025658 and NRF-2012M2B2B1055500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Yong Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, DY., Park, MS., Lee, KY. et al. Decomposition of uranyl peroxo-carbonato complex ion in the presence of metal oxides in carbonate media. J Radioanal Nucl Chem 306, 761–768 (2015). https://doi.org/10.1007/s10967-015-4196-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4196-0

Keywords

Navigation