Journal of Radioanalytical and Nuclear Chemistry

, Volume 307, Issue 1, pp 385–394 | Cite as

An experimental study on the synergistic effects between Azolla and Anabaena in removal of uranium from solutions by Azolla–anabaena symbiotic system

  • Changchun Pan
  • Nan Hu
  • Dexin Ding
  • Jinsong Hu
  • Guangyue Li
  • Yongdong Wang


In order to study the synergistic effects between Azolla and Anabaena in the removal of uranium from wastewater by Azolla–anabaena symbiotic system (AASS), the Azolla without Anabaena (AWA) was separated from the AASS. The removal of uranium by the AWA and the AASS, the growth inhibition, the solution protein contents, the superoxide dismutase, catalase and peroxidase activities under the stress of different uranium solutions were measured and analyzed. The results show that there were synergistic effects between Azolla and Anabaena.


Biosorption Azolla–anabaena symbiotic system Uranium Antioxidant enzymes 



This research was supported by the Defense Industrial Technology Development Program (B3720132001), National Natural Science Foundation of China (U1401231 and 11305087), Postgraduate Innovation Foundation of Hunan Province (CX2012A016).


  1. 1.
    Voitsekhovitch O, Soroka Y, Lavrova T (2006) Uranium mining and ore processing in Ukraine–radioecological effects on the Dnipro River water ecosystem and human health. Radioact Environ 8:206–214CrossRefGoogle Scholar
  2. 2.
    Carvalho FP (2014) The National Radioactivity Monitoring Program for the Regions of Uranium Mines and Uranium Legacy Sites in Portugal. Procedia Earth Planet Sci 8:33–37CrossRefGoogle Scholar
  3. 3.
    McCombie C (1997) The hazards presented by radioactive wastes and the safety levels to be provided by repositories. Nucl Eng Des 176:43–50CrossRefGoogle Scholar
  4. 4.
    Ojovan MI, Lee WE (2014) An introduction to nuclear waste immobilisation. Elsevier, NederlandGoogle Scholar
  5. 5.
    Wang Y, Gu Z, Yang J, Liao J, Yang Y, Liu N, Tang J (2014) Amidoxime-grafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium(VI). Appl Surf Sci 320:10–20CrossRefGoogle Scholar
  6. 6.
    Shao D, Hou G, Li J, Wen T, Ren X, Wang X (2014) PANI/GO as a super adsorbent for the selective adsorption of uranium(VI). Chem Eng J 255:604–612CrossRefGoogle Scholar
  7. 7.
    Aslani MAA, Yusan S, Yenil N, Kuzu S (2012) Sorption profile of uranium (VI) from aqueous mediumonto3-O-acetyl-(S)-1,2-O-trichloroethylidene-5,6,8-trideoxy–d-xylo-oct-5(E)-eno-1,4-furano-7-ulose (OASOTCETDOXDXOEEFU). Chem Eng J 200–202:391–398CrossRefGoogle Scholar
  8. 8.
    Semnani F, Asadi Z, Samadfam M, Sepehrian H (2012) Uranium(VI) sorption behavior onto amberlite CG-400 anion exchange resin: effects of pH, contact time, temperature and presence of phosphate. Ann Nucl Energy 48:21–24CrossRefGoogle Scholar
  9. 9.
    De Filippis LF (2015) Soil remediation and plants. Elsevier, NederlandGoogle Scholar
  10. 10.
    Soudek P, Petrová Š, Benešová D, Dvořáková M, Vaněk T (2011) Uranium uptake by hydroponically cultivated crop plants. J Environ Radioact 102:598–604CrossRefGoogle Scholar
  11. 11.
    Kalin M, Wheeler WN, Meinrath G (2004) The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioact 78:151–177CrossRefGoogle Scholar
  12. 12.
    Martins M, Faleiro ML, Da Costa AMR, Chaves S, Tenreiro R, Matos AP, Costa MC (2010) Mechanism of uranium (VI) removal by two anaerobic bacterial communities. J Hazard Mater 184:89–96CrossRefGoogle Scholar
  13. 13.
    Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332CrossRefGoogle Scholar
  14. 14.
    Pandey VC (2012) Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. Ecotoxicol Environ Safe 82:8–12CrossRefGoogle Scholar
  15. 15.
    Costa ML, Santos MCR, Carrapiço F, Pereira AL (2009) Azolla–Anabaena’s behaviour in urban wastewater and artificial media—influence of combined nitrogen. Water Res 43:3743–3750CrossRefGoogle Scholar
  16. 16.
    Zhao M, Duncan JR, van Hille RP (1999) Removal and recovery of zinc from solution and electroplating effluent using Azolla filiculoides. Water Res 33:1516–1522CrossRefGoogle Scholar
  17. 17.
    Hu N, Ding DX, Li GY, Wang YD, Li L, Zheng JF (2012) Uranium removal from water by five aquatic plants. Acta Sci Circumst 32:1637–1645Google Scholar
  18. 18.
    Plazinski J, Taylor R, Shaw W, Croft L, Rolfe BG, Gunning BES (1990) Isolation of Agrobacterium sp., strain from the Azolla leaf cavity. FEMS Microbiol Lett 70:55–59CrossRefGoogle Scholar
  19. 19.
    Glenn G (2014) Chapter three-preparation of protein samples for mass spectrometry and N-Terminal sequencing. Method Enzymol 536:27–44CrossRefGoogle Scholar
  20. 20.
    Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85CrossRefGoogle Scholar
  21. 21.
    Góth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143–151CrossRefGoogle Scholar
  22. 22.
    Li HX, Xiao Y, Cao LL, Yan X, Li C, Shi HY, Wang JW, Ye YH (2013) PLoS ONE. doi: 10.1371/journal.pone.0073380 Google Scholar
  23. 23.
    Park CK, Lee JH, Cheong HT, Yang BK, Kim CI (1997) Effect of superoxide dismutase (SOD) on pronucleus formation of porcine oocytes fertilized in vitro. Theriogenology 48:1137–1146CrossRefGoogle Scholar
  24. 24.
    Babu SC, Sanyal P (2009) Food security, poverty and nutrition policy analysis. Elsevier, NederlandGoogle Scholar
  25. 25.
    Rakhshaee R, Khosravi M, Ganji MT (2006) Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides. J Hazard Mater 134:120–129CrossRefGoogle Scholar
  26. 26.
    Bennicelli R, Stępniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55:141–146CrossRefGoogle Scholar
  27. 27.
    Freire-Nordi CS, Vieira AAH, Nascimento OR (2005) The metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR study. Process Biochem 40:2215–2224CrossRefGoogle Scholar
  28. 28.
    Maier RM, Pepper IL (2015) Environmental microbiology, 3rd edn. Elsevier, NederlandGoogle Scholar
  29. 29.
    Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393CrossRefGoogle Scholar
  30. 30.
    Zhan YY, Yang RJ, Wang XL, Zhan YJ (2011) Effects of Cr(VI) on the growth of marine algae. Acta Sci Circumst. doi: 10.13671/j.hjkxxb.2011.04.003
  31. 31.
    Somashekaraiah BV, Padmaja K, Prasad A (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorphyll degradation. Physiol Plant 85:85–89CrossRefGoogle Scholar
  32. 32.
    Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649CrossRefGoogle Scholar
  33. 33.
    Dai L, Dong X, Ma H (2012) Molecular mechanism for cadmium-induced anthocyanin accumulation in Azolla imbricata. Chemosphere 87:319–325CrossRefGoogle Scholar
  34. 34.
    Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9CrossRefGoogle Scholar
  35. 35.
    Masood A, Shah NA, Zeeshan M, Abraham G (2006) Differential response of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides). Environ Exp Bot 58:216–222CrossRefGoogle Scholar
  36. 36.
    Hu L, Li H, Pang H, Fu J (2012) Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. J Plant Physiol 169:146–156CrossRefGoogle Scholar
  37. 37.
    Lannone MF, Groppa MD, Benavides MP (2015) Cadmium induces different biochemical responses in wild type and catalase-deficient tobacco plants. Environ Exp Bot 109:201–211CrossRefGoogle Scholar
  38. 38.
    Aftab KU, Ahmad IZ (2013) Alterations in Antioxidative Defense System of Anabaena Variabilis in the Presence of Heavy Metals. APCBEE Procedia 5:491–496CrossRefGoogle Scholar
  39. 39.
    Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494CrossRefGoogle Scholar
  40. 40.
    Koricheva J, Roy S, Vranjic JA, Haukioja E, Hughes PR, Hänninen O (1997) Antioxidant responses to simulated acid rain and heavy metal deposition in birch seedlings. Environ Pollut 95:249–258CrossRefGoogle Scholar
  41. 41.
    Chen F, Wang F, Wu F, Mao W, Zhang G, Zhou M (2010) Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol Biochem 48:663–672CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Changchun Pan
    • 1
  • Nan Hu
    • 1
  • Dexin Ding
    • 1
  • Jinsong Hu
    • 1
  • Guangyue Li
    • 1
  • Yongdong Wang
    • 1
  1. 1.Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and HydrometallurgyUniversity of South ChinaHengyangPeople’s Republic of China

Personalised recommendations