Skip to main content

A chromatographic separation of neptunium and protactinium using 1-octanol impregnated onto a solid phase support

Abstract

We have developed a new chromatographic method to efficiently separate and isolate neptunium (Np) and protactinium (Pa), based on the selective extraction of protactinium by primary alcohols. The effectiveness of the new technology is demonstrated by efficient separation of 233Pa from parent radionuclide 237Np, using a hydrochloric acid mobile-phase medium. Our new approach reproducibly isolated 233Pa tracer with a yield of 99 ± 1 % (n = 3; radiochemical purity 100 %) and enabled chemical recovery of 237Np parent material of 92 ± 3 % (radiochemical >99 %) for future 233Pa tracer preparations. Compared to previous methods, the new approach reduces radioactive inorganic and organic waste; simplifies the separation process by eliminating cumbersome liquid–liquid extractions; and allows isolation of radiochemically-pure fractions in less than 1 h.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Emsley J (2003) Nature’s building blocks: an A to Z guide to the elements. Oxford University Press, Oxford

    Google Scholar 

  2. Morss LR, Edelstein NM, Fuger J (2010) The chemistry of the actinide and transactinide elements, vol 1. Springer, Dordrecht

    Google Scholar 

  3. Peate DW, Hawkesworth CJ (2005) Rev Geophys. doi:10.1029/2004RG000154

    Google Scholar 

  4. Negre C, Thomas AL, Mas JL, Garcia-Orellana J, Henderson GM, Masque P, Zahn R (2009) Anal Chem 81(5):1914–1919

    CAS  Article  Google Scholar 

  5. Bourdon B, Turner S, Henderson GM, Lundstrom CC (2003) Rev Miner Geochem 52:1–21

    CAS  Article  Google Scholar 

  6. Regelous M, Turner SP, Elliott TR, Rostami K, Hawkesworth CJ (2004) Anal Chem 76(13):3584–3589

    CAS  Article  Google Scholar 

  7. Eppich GR, Williams RW, Gaffney AM, Schorzman KC (2013) J Anal Atom Spectrom 28(5):666–674

    CAS  Article  Google Scholar 

  8. Morgenstern A, Apostolidis C, Mayer K (2002) Anal Chem 74(21):5513–5516

    Article  Google Scholar 

  9. Keegan RP, Gehrke RJ (2003) Appl Radiat Isot 59(2–3):137–143

    CAS  Article  Google Scholar 

  10. Eskandari Nasab M (2014) Fuel 116:595–600

    CAS  Article  Google Scholar 

  11. Wilson RE (2012) Nat Chem 4(7):586

    CAS  Article  Google Scholar 

  12. De Sio SM, Wilson RE (2014) Inorg Chem 53(3):1750–1755

    Article  Google Scholar 

  13. Kumari N, Pathak PN, Prabhu DR, Manchanda VK (2012) Desalin Water Treat 38(1–3):46–51

    CAS  Article  Google Scholar 

  14. Uhlir J (2005) In: Nakajima T, Groult H (eds) Fluorinated materials for energy conversion. Elsevier, Amsterdam

    Google Scholar 

  15. Pickett DA, Murrell MT, Williams RW (1994) Anal Chem 66(7):1044–1049

    CAS  Article  Google Scholar 

  16. Sill CW (1966) Anal Chem 38(11):1458

    CAS  Article  Google Scholar 

  17. Kirby HW (1959) National Academy of Sciences National Research Council, Nuclear Series

  18. Turner DR, Pabalan RT, Bertetti FP (1998) Clay Clay Miner 46(3):256–269

    CAS  Article  Google Scholar 

  19. Zhao P, Tinnacher RM, Zavarin M, Kersting AB (2014) J Environ Radioact 137:163–172

    CAS  Article  Google Scholar 

  20. Nakata K, Fukuda T, Nagasaki S, Tanaka S, Suzuki A, Tanaka T, Muraoka S (1999) Czech J Phys 49:159–166

    CAS  Article  Google Scholar 

  21. Bubernak J, Lew MS, Matlack GM (1969) Anal Chim Acta 48(2):233–241

    CAS  Article  Google Scholar 

  22. Hull CD, Burnett WC, Cable P, Yeh CC (1992) U-series dating using extraction chromatography; U, Pa in geological using TRU resin and alpha-spec. Abstract HU192. 38th annual conference on bioassay, analytical and environmental radiochemistry, Santa Fe, NM

  23. Tylenda CA, Jones D, Ingerman L, Sage G, Chappell L (2001) Agency for Toxic Substances and Disease Registery, Atlanta

  24. Burnett WC, Yeh CC (1995) Radioact Radiochem 6(4):22–32

    CAS  Google Scholar 

  25. National Nuclear Data Center (2015) Information extracted from the NuDat 2 database. http://www.nndc.bnl.gov/nudat2/

  26. Currie LA (1968) Anal Chem 40(3):586–593

    CAS  Article  Google Scholar 

  27. Horwitz EP, McAlister DR, Dietz ML (2006) Separ Sci Technol 41(10):2163–2182

    CAS  Article  Google Scholar 

  28. Knight AW, Eitrheim ES, Nelson AW, Nelson S, Schultz MK (2014) J Environ Radioact 134:66–74

    CAS  Article  Google Scholar 

  29. Nelson AW, May D, Knight AW, Eitrheim ES, Mehrhoff M, Shannon R, Litman R, Schultz MK (2014) Environ Sci Technol Lett 1(1):204–208

    CAS  Article  Google Scholar 

  30. Inn KGW, Hall E, Woodward JT IV, Stewart B, Pollanen R, Selvig L, Turner S, Outola I, Nour S, Kurosaki H, LaRosa J, Schultz MK, Lin Z, Yu Z, McMahon CJ (2008) J Radioanal Nucl Chem 276(2):385–390

    CAS  Article  Google Scholar 

  31. Le Naour C, Trubert D, Di Giandomenico MV, Fillaux C, Den Auwer C, Moisy P, Hennig C (2005) Inorg Chem 44(25):9542–9546

    Article  Google Scholar 

  32. Mendes M, Aupiais J, Jutier C, Pointurier F (2013) Anal Chim Acta 780:110–116

    CAS  Article  Google Scholar 

  33. Tananaev IG, Dzyubenko VI (1989) Soviet Radiochem (Eng Transl) 30(6):797–800

    Google Scholar 

  34. Burney GA, Harbour RM (1974) The radiochemistry of neptunium, National Academy of Sciences National Resource Council, Nuclear Series

  35. Johnsen AM (2008) Neptunium dioxide precipiation kinetics in aqeous systems, PhD Dissertation. University of California, Berkley

  36. Siboulet B, Marsden CJ, Vitorge P (2008) New J Chem 32(12):2080–2094

    CAS  Article  Google Scholar 

  37. Toraishi T, Tsuneda T, Tanaka SJ (2006) Phys Chem 110(49):13303–13309

    CAS  Article  Google Scholar 

  38. Mendes M, Leguay S, Le Naour C, Hamadi S, Roques J, Moisy P, Guillaumont D, Topin S, Aupiais J, Den Auwer C, Hennig C (2013) Inorg Chem 52(13):7497–7507

    CAS  Article  Google Scholar 

  39. Guillaum R, Bouissie G, Muxart R (1968) Actin Rev 1(2):135

    Google Scholar 

  40. Scherff HL, Herrmann G (1966) Radiochim Acta 6(2):53

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Phil Horwitz, Daniel McAlister, and Eichrom Technologies for the production of the resin form of 1-octanol for these experiments. This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Number, 2012-DN-130-NF0001-02. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.

Conflict of interest

The authors declare no competing financial interest. Interested investigators are invited to inquire with the authors for access to the new resin-based material for further research applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Schultz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Knight, A.W., Nelson, A.W., Eitrheim, E.S. et al. A chromatographic separation of neptunium and protactinium using 1-octanol impregnated onto a solid phase support. J Radioanal Nucl Chem 307, 59–67 (2016). https://doi.org/10.1007/s10967-015-4124-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4124-3

Keywords

  • Protactinium
  • Neptunium
  • Separation
  • 1-Octanol
  • Radiochemistry