Skip to main content
Log in

Adsorption of UO2 2+ ions from aqueous solution using amine functionalized MWCNT: kinetic, thermodynamic and isotherm study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The adsorption of UO2 2+ ions from aqueous solution using ethylene diamine and triazine functionalized multiwall carbon nanotubes have been investigated. The result for kinetic study within 90 min revealed that with increasing the time, uranium adsorption increased and process followed pseudo first order model. Isotherm study was investigated using Langmuir and Freundlich model as maximum adsorption capacity by ethylene diamine and triazine was 69.44 and 74.62 mg g−1 respectively. Thermodynamic parameters shows negative value of Gibbs free energy and endothermic pathway for uranium adsorption. These results indicate that prepared sorbent has good efficiency for uranium adsorption from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu J, Chen M, Zhang C, Yi Z (2013) Adsorption of uranium(VI) from aqueous solution by diethylenetriamine-functionalized magnetic chitosan. J Radioanal Nucl Chem 298:1375–1383

    Article  CAS  Google Scholar 

  2. Cao Q, Liu Y, Kong X, Zhou L, Guo H (2013) Synthesis of phosphorus-modified poly(styrene-co-divinylbenzene) chelating resin and its adsorption properties of uranium(VI). J Radioanal Nucl Chem 298(1137):1147

    Google Scholar 

  3. Aly Z, Luca V (2013) Uranium extraction from aqueous solution using dried and pyrolyzed tea and coffee wastes. J Radioanal Nucl Chem 295:889–900

    Article  CAS  Google Scholar 

  4. Belgacem A, Rebiai R, Hadoun H, Khemaissia S, Belmedani M (2013) The removal of uranium (VI) from aqueous solutions onto activated carbon developed from grinded used tire. Environ Sci Pollut Res 21:684–694

    Article  Google Scholar 

  5. Villalobos-Rodriguez R, Montero-Cabrera ME, Esparza-Ponce HE, Herrera-Peraza EF, Ballinas-Casarrubias ML (2012) Uranium removal from water using cellulose triacetate membranes added with activated carbon. Appl Rad Isot 70:872–881

    Article  CAS  Google Scholar 

  6. Bonato M, Ragnarsdottir KV, Allen GC (2012) Removal of uranium(VI), lead(II) at the surface of TiO2 nanotubes studied by X-ray photoelectron spectroscopy. Water Air Soil Pollut 223:3845–3857

    Article  CAS  Google Scholar 

  7. Nie B, Zhang Z, Cao X, Liu Y, Liang P (2013) Sorption study of uranium from aqueous solution on ordered mesoporous carbon CMK-3. J Radioanal Nucl Chem 295:663–670

    Article  CAS  Google Scholar 

  8. Song M, Wang Q, Meng Y (2012) Removal of UO2 2+ from aqueous solution by plasma functionalized MWCNTs. J Radioanal Nucl Chem 293:899–906

    Article  CAS  Google Scholar 

  9. Rahmati A, Ghaemi A, Samadfam M (2012) Kinetic and thermodynamic studies of uranium(VI) adsorption using Amberlite IRA-910 resin. Ann Nucl Energy 39:42–48

    Article  CAS  Google Scholar 

  10. Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium(VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296:434–441

    Article  CAS  Google Scholar 

  11. Zhang X, Jiao C, Wang J, Liu Q, Li R, Yang P, Zhang M (2012) Removal of uranium(VI) from aqueous solutions by magnetic Schiff base: kinetic and thermodynamic investigation. Chem Eng J 198–199:412–419

    Article  Google Scholar 

  12. Zhang X, Lanyang JL, Wanga J, Li R, Liu Q, Zhang M, Liu L (2012) Removal of uranium(VI) from aqueous solutions by magnetic Mg–Al layered double hydroxide intercalated with citrate: kinetic and thermodynamic investigation. Colloids Surf A 414:220–227

    Article  CAS  Google Scholar 

  13. Anirudhan TS, Bringle CD, Rijith S (2010) Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay. J Environ Radioact 101:267–276

    Article  CAS  Google Scholar 

  14. Alpaslan D, Aktas N, Yilmaz S, Sahiner N, Guven O (2014) The preparation of p(acrylonitrile-co-acrylamide) hydrogels for uranyl ion recovery from aqueous environments. Hacet J Biol Chem 42:89–97

    Article  Google Scholar 

  15. Ozeroglu C, Metin N (2012) Adsorption of uranium ions by crosslinked polyester resin functionalized with acrylic acid from aqueous solutions. J Radioanal Nucl Chem 292:923–935

    Article  Google Scholar 

  16. Donat R (2009) The removal of uranium (VI) from aqueous solutions onto natural sepiolite. J Chem Thermodyn 41:829–835

    Article  CAS  Google Scholar 

  17. Shuibo X, Chun Z, Xinghuo Z, Jing Y, Xiaojian Z, Jingsong W (2009) Removal of uranium (VI) from aqueous solution by adsorption of hematite. J Environ Radioact 100:162–166

    Article  Google Scholar 

  18. Weihua Z, Lei Z, Runping H (2009) Removal of uranium (VI) by fixed bed ion-exchange column using natural zeolite coated with manganese oxide. Chin J Chem Eng 17:585–593

    Article  Google Scholar 

  19. Zhang ZB, Yu XF, Cao XH, Hua R, Li M, Liu YH (2014) Adsorption of U(VI) from aqueous solution by sulfonated ordered mesoporous carbon. J Radioanal Nucl Chem 301:821–830

    Article  CAS  Google Scholar 

  20. Selcuk S, Ersen Y, Ali B (2013) Amine-modified maleic anhydride containing terpolymers for the adsorption of uranyl ion in aqueous solutions. J Radioanal Nucl Chem 298:923–930

    Article  Google Scholar 

  21. Yousif AM, El-Afandy AH, Abdel Wahab GM, Mubark AE, Ibrahim IA (2015) Selective separation of uranium(VI) from aqueous solutions using amine functionalized cellulose. J Radioanal Nucl Chem 303:1821–1833

    CAS  Google Scholar 

  22. Wang M, Qiu J, Tao X, Wu C, Cui W, Liu Q, Lu S (2011) Effect of pH and ionic strength on U(IV) sorption to oxidized multiwalled carbon nanotubes. J Radioanal Nucl Chem 288:895–901

    Article  CAS  Google Scholar 

  23. Chisholm-Brause CJ, Berg JM, Matzner RA, Morris DE (2001) Uranium(VI) sorption complexes on montmorillonite as a function of solution chemistry. J Colloid Interface Sci 233:38–49

    Article  CAS  Google Scholar 

  24. Peng GW, Ding DX, Xiao FZ, Wang XL, Hun N, Wang YD, Dai YM, Cao Z (2014) Adsorption of uranium ions from aqueous solution by amine-group functionalized magnetic Fe3O4 nanoparticle. J Radioanal Nucl Chem 301:781–788

    Article  CAS  Google Scholar 

  25. Kuo CY (2009) Comparison with as-grown and microwave modified carbon nanotubes to removal aqueous bisphenol A. Desalination 249:976–982

    Article  CAS  Google Scholar 

  26. Liu Y, Gao L, Sun J, Wang Y (2010) Functionalization of carbon nanotubes for nanoparticle attachment. J Ceram Process Res 11:120–122

    Google Scholar 

  27. Ho YS, Mckay G (2002) Application of kinetic models to the sorption of copper(II) on to Peat. Ads Sci Technol 20:797–815

    Article  CAS  Google Scholar 

  28. Lin SH, Juang RS (2002) Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J Hazard Mater 92:315–326

    Article  CAS  Google Scholar 

  29. Chowdhury S, Saha P (2011) Adsorption thermodynamics and kinetics of malachite green onto Ca(OH)2 treated fly ash. J Environ Eng 137:388–397

    Article  CAS  Google Scholar 

  30. Ozdemir G, Yapar S (2009) Adsorption and desorption behavior of copper ions on Na-montmorillonite: effect of rhamnolipids and pH. J Hazard Mater 166:1307–1313

    Article  Google Scholar 

  31. Naiya TK, Bhattacharya AK, Das SK (2009) Clarified sludge (basic oxygen furnace sludge): an adsorbent for removal of Pb(II) from aqueous solutions: kinetics, thermodynamics and desorption studies. J Hazard Mater 170:252–262

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Nima Mirzababaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alijani, H., Beyki, M.H. & Mirzababaei, S.N. Adsorption of UO2 2+ ions from aqueous solution using amine functionalized MWCNT: kinetic, thermodynamic and isotherm study. J Radioanal Nucl Chem 306, 165–173 (2015). https://doi.org/10.1007/s10967-015-4078-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4078-5

Keywords

Navigation