Skip to main content

Kinetic and thermodynamic studies of U(VI) adsorption using Dowex-Marathon resin

Abstract

The kinetics and thermodynamics of U(VI) adsorption on Dowex-Marathon anionic resin have been studied. The process was well described by the pseudo-second order kinetic model for 0.02–0.1 M U(VI) concentration. The activation energy of U(VI) adsorption on Dowex-Marathon resin was determined: 6.62 ± 0.16 kJ/mol, indicating that the adsorption has a low potential barrier and corresponds to a physisorption. The thermodynamic parameter were evaluated: ∆G° = (−6.37)/(−9.23) kJ/mol, for temperature range: 20–60 °C; ∆H° = 14.57 kJ/mol and ∆S° = 71.48 J/mol K, the U(VI) adsorption being spontaneous and endothermic.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Matijašević S, Dacović A, Tomašević–Čanović M, Stojanović M, Ileš D (2006) J Serb Chem Soc 71:1326–1331

    Google Scholar 

  2. Konstantinou M, Demetriou A, Pashalidis I (2007) Global NEST J 9:229–236

    Google Scholar 

  3. Gasser MS, Morad GA, Aly HF (2006) Adsorption 12:65–76

    CAS  Article  Google Scholar 

  4. Ladeira ACQ, Morais CA (2005) Radiochim Acta 93:207–209

    CAS  Article  Google Scholar 

  5. Metwally E, Saleh ASh, El-Naggar HA (2005) J Nucl Radiochem Sci 6:119–126

    CAS  Article  Google Scholar 

  6. Donia AM, Atia AA, Moussa EMM, El-Sherif AM, El-Magied MOA (2009) Hydrometallurgy 95:183–189

    CAS  Article  Google Scholar 

  7. Rahmati A, Ghaemi A, Samadfam M (2012) Ann Nucl Energy 39:42–48

    CAS  Article  Google Scholar 

  8. Shimokawa J, Nishio G, Komori T (1964) J Nucl Sci Technol 1:51–57

    CAS  Article  Google Scholar 

  9. Fujii Y, Fukuda J, Kakihana H (1978) J Nucl Sci Technol 15:745–752

    CAS  Article  Google Scholar 

  10. Takeda K, Obanawa H(1988) US Patent No. 4,748,008

  11. Axente D, Marcu C, Dragan ES, Avram E (2006) Rev Chim (Bucharest) 57:1079–1081

    CAS  Google Scholar 

  12. Xie S, Yang J, Chen C, Zhang X, Wang Q, Zhang C (2008) J Environ Radioact 99:126–133

    CAS  Article  Google Scholar 

  13. Axente D, Marcu C, Dragan ES, Avram E (2005) Rev Chim (Bucharest) 56:825–829

    CAS  Google Scholar 

  14. Axente D, Balla A, Marcu C (2011) J Radioanal Nucl Chem 288:717–721

    CAS  Article  Google Scholar 

  15. Wang G, Liu J, Wang X, Xie Z, Deng N (2009) J Hazard Mater 168:1053–1058

    CAS  Article  Google Scholar 

  16. Yusan S, Erenturk SA (2010) Desalination 263:233–239

    CAS  Article  Google Scholar 

  17. Kilincarslan A, Akyil S (2005) J Radioanal Nucl Chem 264:541–548

    CAS  Article  Google Scholar 

  18. Wawrzkiewicz M, Hubicki Z (2010) Chem Eng J 157:29–34

    CAS  Article  Google Scholar 

  19. Salman JM, Al-Saad KA (2012) Int J Chem Sci 10:677–690

    CAS  Google Scholar 

  20. Tan IAW, Ahmad AL, Hameed BH (2008) J Hazard Mater 154:337–346

    CAS  Article  Google Scholar 

  21. Özcan A, Öncü EM, Özcan AS (2006) Colloids Surf A 277:90–97

    Article  Google Scholar 

  22. Ho YS (2006) J Hazard Mater B 136:681–689

    CAS  Article  Google Scholar 

  23. Wawrzkiewicz M (2013) Chem Eng J 217:414–425

    CAS  Article  Google Scholar 

  24. Boparai HK, Meera J, O’Carrol DM (2011) J Hazard Mater 186:458–465

    CAS  Article  Google Scholar 

  25. Kumar PS, Ramakrishnan K, Kirupta SD, Sivanesan S (2010) Braz J Chem Eng 27:344–355

    Google Scholar 

  26. Zulfikar MA, Setiyano H, Djajanti SD (2013) Songklanakarin J Sci Technol 35:309–316

    CAS  Google Scholar 

  27. Gupta SS, Bhattacharyya KG (2011) Adv Colloid Interface 162:39–58

    Article  Google Scholar 

  28. Maksin DD, Kljajević SO, Đolić MB, Marković JP, Ekmeščić BM, Onjia AE, Nastasović AB (2012) Hem Ind 66:795–804

    CAS  Article  Google Scholar 

  29. Ho YS, Ofomaja AE (2005) Process Biochem 40:3455–3461

    CAS  Article  Google Scholar 

  30. Kilislioglu A, Bilgin B (2003) Appl Radiat Isot 58:155–160

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Marcu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marcu, C., Axente, D. & Balla, A. Kinetic and thermodynamic studies of U(VI) adsorption using Dowex-Marathon resin. J Radioanal Nucl Chem 305, 623–630 (2015). https://doi.org/10.1007/s10967-015-3959-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-3959-y

Keywords

  • U(VI)
  • Adsorption
  • Dowex-Marathon resin
  • Kinetics
  • Isotherms
  • Thermodynamics