Bench-scale electrokinetic remediation for cesium-contaminated sediment at the Hanford Site, USA

Abstract

We conducted a laboratory experiment to investigate the efficiency of electrokinetic (EK) remediation method for Hanford sediment (76 % sand and 24 % silt–clay) after artificial contamination with nonradioactive 133Cs (0.01 M CsNO3) as a surrogate for radioactive 137Cs. A significant removal of cationic 133Cs from the sediment occurred from the cathode side (−), whereas the removal was negligible from the anode side (+) during the EK remediation process for 68 days. The experimental results suggest that the EK method can effectively remove radioactive Cs from the surface or subsurface sediment contaminated by radioactive materials in the Hanford Site, Washington, USA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Zachara JM, Serne J, Freshley M, Mann F, Anderson F, Wood M, Jones T, Myers D (2007) Geochemical processes controlling migration of tank wastes in Hanford’s vadose zone. Vadose Zone J 6:985–1003

    Article  CAS  Google Scholar 

  2. 2.

    Liu CX, Zachara JM, Smith SC, McKinley JP, Ainsworth CC (2003) Desorption kinetics of radiocesium from subsurface sediments at Hanford Site, USA. Geochim Cosmochim Acta 67:2893–2912

    Article  CAS  Google Scholar 

  3. 3.

    McKinley JP, Zeissler CJ, Zachara JM, Serne RJ, Lindstrom RM, Schaef HT, Orr RD (2001) Distribution and retention of Cs-137 in sediments at the Hanford Site, Washington. Environ Sci Technol 35:3433–3441

    Article  CAS  Google Scholar 

  4. 4.

    Gephart RE, Lundgren RE (1998) Hanford tank cleanup: a guide to understanding the technical issues. Battelle Press, Columbus

    Google Scholar 

  5. 5.

    Flury M, Czigany S, Chen G, Harsh JB (2004) Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength. J Contam Hydrol 71:111–126

    Article  CAS  Google Scholar 

  6. 6.

    Zhuang J, Flury M, Jin Y (2003) Colloid-facilitated Cs transport through water-saturated Hanford sediment and Ottawa sand. Environ Sci Technol 37:4905–4911

    Article  CAS  Google Scholar 

  7. 7.

    Zachara JM, Smith SC, Liu CX, McKinley JP, Serne RJ, Gassman PL (2002) Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA. Geochim Cosmochim Acta 66:193–211

    Article  CAS  Google Scholar 

  8. 8.

    Hamby DM (1996) Site remediation techniques supporting environmental restoration activities—a review. Sci Total Environ 191:203–224

    Article  CAS  Google Scholar 

  9. 9.

    Acar YB, Gale RJ, Alshawabkeh AN, Marks RE, Puppala S, Bricka M, Parker R (1995) Electrokinetic remediation—basics and technology status. J Hazard Mater 40:117–137

    Article  CAS  Google Scholar 

  10. 10.

    Yeung AT (2011) Milestone developments, myths, and future directions of electrokinetic remediation. Sep Purif Technol 79:124–132

    Article  CAS  Google Scholar 

  11. 11.

    Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. Environ Sci Technol 27:2638–2647

    Article  CAS  Google Scholar 

  12. 12.

    Virkutyte J, Sillanpaa M, Latostenmaa P (2002) Electrokinetic soil remediation—critical overview. Sci Total Environ 289:97–121

    Article  CAS  Google Scholar 

  13. 13.

    Kim B-K, Baek K, Ko S-H, Yang J-W (2011) Research and field experiences on electrokinetic remediation in South Korea. Sep Purif Technol 79:116–123

    Article  CAS  Google Scholar 

  14. 14.

    Yeung AT, Gu YY (2011) A review on techniques to enhance electrochemical remediation of contaminated soils. J Hazard Mater 195:11–29

    Article  CAS  Google Scholar 

  15. 15.

    Kim GN, Oh WZ, Won HJ, Choi WK (2003) Removal of cesium and cobalt from soil around TRIGA reactor using electrokinetic method. J Ind Eng Chem 9:306–313

    CAS  Google Scholar 

  16. 16.

    Al-Shahrani SS, Roberts EPL (2005) Electrokinetic removal of caesium from kaolin. J Hazard Mater 122:91–101

    Article  CAS  Google Scholar 

  17. 17.

    Kim G-N, Jung Y-H, Lee J-J, Moon J-K, Jung C-H (2008) Development of electrokinetic-flushing technology for the remediation of contaminated soil around nuclear facilities. J Ind Eng Chem 14:732–738

    Article  CAS  Google Scholar 

  18. 18.

    Kim G-N, Lee S-S, Shon D-B, Lee K-W, Chung U-S (2010) Development of pilot-scale electrokinetic remediation technology to remove Co-60 and Cs-137 from soil. J Ind Eng Chem 16:986–991

    Article  CAS  Google Scholar 

  19. 19.

    Kim G-N, Yang B-I, Choi W-K, Lee K-W (2009) Development of vertical electrokinetic-flushing decontamination technology to remove Co-60 and Cs-137 from a Korean nuclear facility site. Sep Purif Technol 68:222–226

    Article  CAS  Google Scholar 

  20. 20.

    Buehler MF, Surma JE, Virden JW (1994) In situ soil remediation using electrokinetics, Hanford symposium on health and the environment: symposium on in situ remediation–scientific basis for current and future technologies. Pacific Northwest National Laboratory, Richland

    Google Scholar 

  21. 21.

    Bostick BC, Vairavamurthy MA, Karthikeyan KG, Chorover J (2002) Cesium adsorption on clay minerals: an EXAFS spectroscopic investigation. Environ Sci Technol 36:2670–2676

    Article  CAS  Google Scholar 

  22. 22.

    McKinley JP, Zachara JM, Heald SM, Dohnalkova A, Newville MG, Sutton SR (2004) Microscale distribution of cesium sorbed to biotite and muscovite. Environ Sci Technol 38:1017–1023

    Article  CAS  Google Scholar 

  23. 23.

    Ho SV, Athmer CJ, Sheridan PW, Shapiro AP (1997) Scale-up aspects of the Lasagna (TM) process for in situ soil decontamination. J Hazard Mater 55:39–60

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was primarily supported by WCU (World Class University) and BK21 + programs at the Division of Advanced Nuclear Engineering (DANE) in POSTECH through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-30005). The authors would like to thank Steven Baum for ICP–OES and ICP-MS analyses in the Environmental Sciences Laboratory, and Laxmikant Saraf for SEM–EDS analysis in EMSL (Environmental Molecular Sciences Laboratory), a DOE national scientific user facility at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. DOE under contract DE-AC06-76RLO 1830.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wooyong Um.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jung, H.B., Yang, JS. & Um, W. Bench-scale electrokinetic remediation for cesium-contaminated sediment at the Hanford Site, USA. J Radioanal Nucl Chem 304, 615–625 (2015). https://doi.org/10.1007/s10967-014-3852-0

Download citation

Keywords

  • Cesium
  • Electrokinetic remediation
  • Hanford site
  • Cation exchange