Skip to main content

Thermoluminescence characteristics of zinc lithium borate glass activated with Cu+ (ZnO–Li2O–B2O3:Cu+) for radiation dosimetry

Abstract

Copper doped zinc lithium borate glass was prepared by solid state melt quenching method and characterized using X-ray diffractometry. The effect of varying concentration of dopant CuO on thermoluminescence (TL) properties of zinc lithium borate is reported in this paper. The best annealing temperature and time were found to be 300 °C and 30 min respectively. While the optimal heating rate was 3 °C. Glow curves with single peaks for all concentrations were obtained. The TL intensity increases with the increase of dopant concentration and radiation dose from 0.5 to 4 Gy. Time-base thermal fading was stable. Attractive reusability and kinetic parameters of the phosphor were also achieved. These outstanding features show that our dosimeter has the potential ability to use for radiation processing dosimetry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Gorelik V, Vdovin A, Moiseenko V (2003) Raman and hyper-Rayleigh scattering in lithium tetraborate crystals. J Russ Laser Res 24:553–605

    Article  CAS  Google Scholar 

  2. Yu Z-T, Shi Z, Chen W, Jiang Y-S, Yuan H-M, Chen J-S (2002) Synthesis and X-ray crystal structures of two new alkaline-earth metal borates: SrBO2(OH) and Ba3B6O9(OH)6. J Chem Soc Dalton 9:2031–2035. doi:10.1039/b110468c

    Article  Google Scholar 

  3. Furetta C (2003) Handbook of thermoluminescence. World Scientific, Singapore

    Book  Google Scholar 

  4. Aboud H, Wagiran H, Hossain I, Hussin R (2012) Infrared spectra and energy band gap of potassium lithium borate glass dosimetry. Int J Phys Sci 7:922–926

    CAS  Google Scholar 

  5. Gautam C, Yadav AK, Singh AK (2012) A review on infrared spectroscopy of borate glasses with effects of different additives. ISRN Ceram 2012:1–17. doi:10.5402/2012/428497

    Article  Google Scholar 

  6. Kafadar VE, Yazici AN, Yildirim RG (2009) Determination of trapping parameters of dosimetric thermoluminescent glow peak of lithium triborate (LiB3O5) activated by aluminum. J Lumin 129:710–714

    Article  CAS  Google Scholar 

  7. Murugavel S, Roling B (2007) Ion transport mechanism in borate glasses: influence of network structure on non-Arrhenius conductivity. Phys Rev B 76:180202

    Article  Google Scholar 

  8. Raju GN, Ramesh NC, Naresh P, Krishna T, Srinivasulu K, Sudhkar K, Rao PV (2009) Spectroscopic and dielectric properties of titanium doped MgO–Al2O3–B2O3 glass system. Mater Sci Eng Iop Conf Ser 2:012031. doi:10.1088/1757-899X/2/1/012031

    Article  Google Scholar 

  9. Isao T, Akihiro K (2013) Synthesis, characterization and charge–discharge properties of layer-structure lithium zinc borate, LiZnBO3. Mater Sci Appl 4:246–249. doi:10.4236/msa.2013.44030

    Google Scholar 

  10. Rao RB, Gerhardt RA, Veeraiah N (2008) Spectroscopic characterization, conductivity and relaxation anomalies in the Li2O–MgO–B2O3 glass system: effect of nickel ions. J Phys Chem Solids 69:2813–2826

    Article  Google Scholar 

  11. Li H, Lin H, Chen W, Luo L (2006) IR and Raman investigation on the structure of B2O3ZnOV2O5 glasses. J Non-Cryst Solids 352:3069–3073

    Article  CAS  Google Scholar 

  12. Alajerami Y, Hashim S, Ghoshal S, Saleh M, Kadni T, Saripan M, Alzimami K, Ibrahim Z, Bradley D (2013) The effect of TiO2 and MgO on the thermoluminescence properties of a lithium potassium borate glass system. J Non-Cryst Solids 74:1816–1822

    CAS  Google Scholar 

  13. Bos A (2006) Theory of thermoluminescence. Radiat Meas 41:45–56

    Article  Google Scholar 

  14. Jiang L, Zhang Y, Li C, Hao J, Su Q (2007) Thermoluminescence properties of Ce3+ doped LiSr4(BO3)3 phosphor. Mater Lett 61:5107–5109

    Article  CAS  Google Scholar 

  15. Alajerami YSM, Hashim S, Wan Hassan WMS, Ramli AT (2012) The effect of titanium oxide on the optical properties of lithium potassium borate glass. J Mol Struct 1026:159–167

    Article  CAS  Google Scholar 

  16. Tugay H, Yegingil Z, Dogan T, Nur N, Yazici N (2009) The thermoluminescent properties of natural calcium fluoride for radiation dosimetry. Nucl Instrum Methods B 267:3640–3651

    Article  CAS  Google Scholar 

  17. Li J, Hao J, Li C, Zhang C, Tang Q, Zhang Y, Su Q, Wang S (2005) Thermally stimulated luminescence studies for dysprosium doped strontium tetraborate. Radiat Meas 39:229–233

    Article  CAS  Google Scholar 

  18. Lee J, Kim J, Pradhan A, Kim B, Chung K, Choe H (2008) Role of dopants in LiF TLD materials. Radiat Meas 43:303–308

    Article  CAS  Google Scholar 

  19. Halperin A, Braner A (1960) Evaluation of thermal activation energies from glow curves. Phys Rev 117:408

    Article  CAS  Google Scholar 

  20. McKeever SW (1988) Thermoluminescence of solids. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Universiti Teknologi Malaysia for the university research Grant. The work was also supported by Tertiary Institution Education Fund (TETFUND) through Usmanu Danfodiyo University Sokoto Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wagiran.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidu, A., Wagiran, H., Saeed, M.A. et al. Thermoluminescence characteristics of zinc lithium borate glass activated with Cu+ (ZnO–Li2O–B2O3:Cu+) for radiation dosimetry. J Radioanal Nucl Chem 304, 627–632 (2015). https://doi.org/10.1007/s10967-014-3846-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3846-y

Keywords