Skip to main content
Log in

Thermodynamic properties of actinides and rare earth fission products in liquid cadmium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Liquid cadmium has been applied as a liquid solvent or a liquid cathode in pyroprocessing to separate actinides from used fuels or high level radioactive nuclear wastes. The thermodynamic properties, such as the element solubility, the stable metallic compounds, the activity coefficients, and the diffusion coefficients, of actinides and rare earth fission products in liquid Cd determine or strongly affect the separation performance of pyroprocessing. In the present article, the existing experimental data of these properties are critically reviewed and analyzed. Considering the liquid cadmium applications in pyroprocessing, the present article focuses on the properties in the Cd-rich region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yoo JH, Seo CS, Kim EH, Lee HS (2008) A conceptual study of pyroprocessing for reconvering actinides from spent oxide fuels. Nucl Eng Technol 40(7):581–592

    Article  CAS  Google Scholar 

  2. Ackerman JP, Settle JL (1993) Distribution of plutonium, americium and several rare earth fission product elements between liquid cadmium and LiCl–KCl eutectic. J Alloy Compd 199:77–84

    Article  CAS  Google Scholar 

  3. Iizuka M, Uozumi K, Inoue T, Iwai T, Shirai O, Arai Y (2001) Behavior of plutonium and americium at liquid cadmium cathode in molten LiCl–KCl electrolyte. J Nucl Mater 299:32–42

    Article  CAS  Google Scholar 

  4. Johnson I (1974) The thermodynamics of plutonium and uranium in liquid alloys and application to pyrochemcial reprocessing of fast breeder reactor fuels. J Nucl Mater 51:163–177

    Article  CAS  Google Scholar 

  5. Johnson I, Feder HM (1962) Thermodynamics of the uranium–cadmium system. Trans Met Soc AIME 224:468–473

    CAS  Google Scholar 

  6. Chiotti P, Akhachinskij VV (1981) The chemical thermodynamics of actinide elements and compounds, part 5. The actinide binary alloys. International Atomic Energy Agency, Vienna, Austria

    Google Scholar 

  7. Kurata M, Sakamura Y (2001) Thermodynamic assessment of systems of actinide or rare earth with Cd. J Phase Equilib 22(3):232–240

    Article  CAS  Google Scholar 

  8. Roy JJ et al (1996) Thermodynamic properties of U, Np, Pu, and Am in molten LiCl–KCl eutectic and liquid cadmium. J Electrochem Soc 143:2487–2492

    Article  CAS  Google Scholar 

  9. Willit JL, Miller WE, Battles JE (1992) Electrorefining of uranium and plutonium––a literature review. J Nucl Mater 195:229–249

    Article  CAS  Google Scholar 

  10. Edwards JB, Hucke EE, Martin JJ (1968) Diffusion in binary liquid–metal systems. Metall Rev 13:1–28

    Google Scholar 

  11. Murakami T, Sakamura Y, Akiyama N, Kitawaki S, Nakayoshi A, Koyama T (2012) Electrochemical measurement of diffusion coefficient of actinides and rare earths in liquid Cd. Procedia Chem 7:798–803

    Article  CAS  Google Scholar 

  12. Murakami T, Kurata M, Sakamura Y, Koyama T, Akiyama N, Kitawaki S, Nakayoshi A (2014) In: Gaune-Escard M, Haarberg GM (eds) Molten salt chemistry and technology, 1st edn. Wiley, Newyork

  13. Johnson I, Chasanov MG, Yonco RM (1965) Pu-Cd system: thermodynamic and partial phase diagram. Trans Metall Soc AIME 233:1408–1414

    CAS  Google Scholar 

  14. Murakami T, Sakamura Y, Akiyama N, Kitawaki S, Nakayoshi A (2014) Electrochemical measurement of diffusion coefficient of Pu in liquid Cd. J Electrochem Soc 161(7):D3057–D3060

    Article  CAS  Google Scholar 

  15. Krumpelt M, Johnson I, Herberger JJ (1969) Cadmium–neptunium––a partial phase diagram of the system. J Less-Common Met 18:35–40

    Article  CAS  Google Scholar 

  16. Shirai O, Uozumi K, Iwai T, Arai Y (2004) Electrode reaction of the Np3+/Np coupled at liquid Cd and Bi electrodes in LiCl–KCl eutectic melts. J Appl Electrochem 34:323–330

    Article  CAS  Google Scholar 

  17. Hayashi H, Akabori M, Minato K (2008) Cyclic voltammetry behavior of americium at a liquid cadmium electrode in LiCl–KCl eutectic melts. Nucl Technol 162:129–134

    CAS  Google Scholar 

  18. Fusselman SP (1999) Thermodynamic properties for rare earths and americium in pyropartitioning process solvents. J Electrochem Soc 146(7):2573–2580

    Article  CAS  Google Scholar 

  19. Hayashi H, Sato T, Ogawa T, Haire RG (1999) Preparation and selected properties of Am-Cd Alloys. In: Proceedings of international conference on future nuclear systems (GLOBAL’99). August 29–September 3, American Nuclear Society, Jackson Hole, Wyoming 1999

  20. Palenzona A, Manfrinetti P (1996) The phase diagram of the Sc–Cd system. J Alloy Compd 237:121–123

    Article  CAS  Google Scholar 

  21. Chasanov MG, Hunt PD, Johnson I, Feder HM (1962) Solubility of 3-d transition metals in liquid cadmium. Trans Metall Soc AIME 224:935

    CAS  Google Scholar 

  22. Murakami T, Koyama T (2011) Application of electrochemical method to measure diffusion coefficient in liquid metal. J Electrochem Soc 158(8):F147–F153

    Article  CAS  Google Scholar 

  23. Gschneidner Jr KA, Calderwood FW (1988) The Cd–Y (cadmium–yttrium) system. Bull Alloy Phase Diagr 9(2):139–140

    Google Scholar 

  24. Ryba E (1969) The partial yttrium cadmium phase diagram. J Less-Common Met 18:419–422

    Article  CAS  Google Scholar 

  25. Kurata M, Sakamura Y, Hijikata T, Kinoshita K (1995) Distribution behavior of uranium, neptunium, rare-earth elements (Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline earth metals (Sr, Ba) between molten LiCl–KCl eutectic salt and liquid cadmium or bismuth. J Nucl Mater 227:110–121

    Article  CAS  Google Scholar 

  26. Kurata M, Sakamura Y, Matsui T (1996) Thermodynamic quantities of actinides and rare earth elements in liquid bismuth and cadmium. J Alloy Compd 324:83–92

    Article  Google Scholar 

  27. Sakata M, Kurata M, Hijikata T, Inoue T (1991) Equilibrium distribution of rate earth elements betwee molten KCl–LiCl eutectic salt and liquid cadmium. J Nucl Mater 185:56–65

    Article  CAS  Google Scholar 

  28. Gschneidner Jr KA, Calderwood FW (1988) The Cd–La (cadmium–lanthanum) system. Bull Alloy Phase Diagr 9(1):32–34

    Article  Google Scholar 

  29. Richter KW, Besana S, Borzone G, Ipser H (2004) Thermodynamic investigations in the lanthanum–cadmium system. J Alloy Compd 365:181–187

    Article  CAS  Google Scholar 

  30. Johnson I (1962) Solubility of the rare earth metals in liquid cadmium. Rare Earth Res 1:123–131

    Google Scholar 

  31. Johnson I, Yonco RM (1970) Thermodynamics of cadmium and zinc-rich alloys in the Cd–La, Cd–Ce, Cd–Pr, Zn–La, Zn–Ce, and Zn–Pr system. Metall Trans 1:905–910

    CAS  Google Scholar 

  32. Sakamura Y, Inoue T, Storvick TS, Grantham LF (1994) Proceedings of the 26th symposium on molten slat chemistry, Sapporo, p 101

  33. Castrillejo Y, Bermejo R, Martinez AM, Barrado E, Diaz Arocas P (2007) Application of electrochemical techniques in pyrochemical processes-electrochemical behavior of rare earths at W, Cd, Bi and Al electrodes. J Nucl Mater 360:32–42

    Article  CAS  Google Scholar 

  34. Gschneidner Jr KA, Calderwood FW (1988) The Cd–Ce (cadmium–cerium) system. Bull Alloy Phase Diagr 9(1):21–23

    Article  Google Scholar 

  35. Gschneidner Jr KA, Calderwood FW (1988) The Cd–Pr (cadmium–praseodymium) system. Bull Alloy Phase Diagr 9(2):131–132

    Google Scholar 

  36. Reichmann TL, Effenberger HS, Ipser H (2014) Experimental investigation of the Cd–Pr phase diagram. PLOS One 9(4):e94025

    Article  Google Scholar 

  37. Rechmann TL, Ipser H (2014) Thermochemical investigations in the system cadmium-praseodymium relevant for pyrometallurgical fuel reprocessing. Metall Mater Trans A 45A:1171–1180

    Article  Google Scholar 

  38. Castrillejo Y, Bermejo MR, Diaz Aroca P, Martinez AM, Barrado E (2005) The electrochemical behavior of the Pr(III)/Pr redox system at Bi and Cd liquid electrodes in molten eutectic LiCl–KCl. J Electroanal Chem 579:343–358

    Article  CAS  Google Scholar 

  39. Skolyszewska-Kuhberger B, Reichmann TL, Ipser H (2014) Phase equilibria in the neodymium–cadmium binary system. J Alloy Compd 606:242–248

    Article  CAS  Google Scholar 

  40. Koyama T, Johnson TR, Fischer DF (1992) Distribution of actinides in molten chloride salt/cadmium metal systems. J Alloy Compd 189:37–44

    Article  CAS  Google Scholar 

  41. Bruzzone G, Fornasini ML (1974) Contribution to the system samarium–cadmium. J Less-Common Met 37:289–292

    Article  CAS  Google Scholar 

  42. Gschneidner Jr KA, Calderwood FW (1988) The Cd–Sm (cadmium–samarium) system. Bull Alloy Phase Diagr 9(2):133–135

    Google Scholar 

  43. Ahluwalia RK, Hua TQ (2002) Electrotransport of uranium from a liquid cadmium anode to a solid cathode. Nucl Technol 140:41–50

    CAS  Google Scholar 

  44. Bruzzone G, Fornasini ML, Merlo F (1971) The gadolinium–cadmium system. J Less-Common Met 25:295–301

    Article  CAS  Google Scholar 

  45. Reichamnn TL, Ganesan R, Ipser H (2014) Thermochemical investigations in the system Cd–Gd. J Alloy Compd 610:676–683

    Article  Google Scholar 

  46. Gschneidner Jr KA, Calderwood FW (1988) The Cd–Gd (cadmium–gadolinium) system. Bull Alloy Phase Diagr 9(1):29–30

    Article  Google Scholar 

  47. Bates J, Ader M, Meisenhelder J, Shinn W, Tani BS, Krumpelt M (1981) Phase relations in the thorium-cadmium system. J less-Common Met 77:205–213

    Article  CAS  Google Scholar 

  48. Palenzona A, Cirafici S (1981) The thorium–cadmium phase diagram. J Less-Common Met 77:215–220

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been performed using funding received from the DOE Office of Nuclear Energy’s Nuclear Energy University Programs (Project 13-4908).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsuo Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Lahti, E.A. & Zhou, W. Thermodynamic properties of actinides and rare earth fission products in liquid cadmium. J Radioanal Nucl Chem 303, 1637–1648 (2015). https://doi.org/10.1007/s10967-014-3827-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3827-1

Keywords

Navigation