Skip to main content
Log in

Dose response linearity and practical factors influencing minimum detectable dose for various thermoluminescent detector types

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The minimum detectable dose (MDD) limit was examined in four different ways for groups of LiF:Mg,Ti thermoluminescent dosimeters, and two ways for CaF2:Dy, CaF2:Tm, CaF2:Mn, and CaSO4:Dy dosimeters. All types were irradiated and read out at dose intervals from 8.8 μGy to 6.6 mGy. Dose response linearity was never lost even for the lowest dose tested. As an ideal MDD, the signal arising from a zero applied dose readout was compared to calibration from true doses, resulting in signal corresponding to 0.04–0.1 μGy. The effects of fading and high ambient radon exposure on the MDD were examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Piesch E, Burgkhardt B (1984) Environmental monitoring, European interlaboratory test programme for integrating dosemeter systems. Commission of the European Communities, Luxemburg (EUR 8932)

    Google Scholar 

  2. Ranogajec-Komor M (2009) In: Aycik GA (ed) New techniques for the detection of nuclear and radioactive agents. Springer, Dordrecht, pp 97–111

    Chapter  Google Scholar 

  3. Ranogajec-Komor M, Knežević Ž, Miljanić S, Vekić B (2008) Characterisation of radiophotoluminescent dosimeters for environmental monitoring. Radiat Meas 43:392–396

    Article  CAS  Google Scholar 

  4. International Electrotechnical Commission (2006) Thermoluminescence dosimetry systems for personal and environmental monitoring. IEC, Geneva (61066:1991)

    Google Scholar 

  5. International Electrotechnical Commission (2012) Radiation protection instrumentation—passive integrating dosimetry systems for environmental and personal monitoring. IEC, Geneva (EC 62387-1:2012)

    Google Scholar 

  6. Currie LA (1968) Limits for qualitative detection and quantitative determination: application to radiochemistry. Anal Chem 40:586–593

    Article  CAS  Google Scholar 

  7. Hirning CR (1992) Detection and determination limits for thermoluminescence dosimetry. Health Phys 62:223–227

    Article  CAS  Google Scholar 

  8. Knoll GF (2010) Radiation detection and measurement. Wiley, New York, pp 733–778

    Google Scholar 

  9. Busuoli G (1981) In: Oberhofer M, Scharmann A (eds) Applied thermoluminescence dosimetry. CRC Press, Bristol, pp 83–96

    Google Scholar 

  10. Traino AC, Perrone F, Luperini C, Tana L, Lazzeri M, d’Errico F (1998) Influence of background exposure on TLD minimum dose detection and determination limits. Radiat Prot Dosim 78:257–262

    Article  CAS  Google Scholar 

  11. Harvey JA, Haverland NP, Kearfott KJ (2010) Characterization of the glow-peak fading properties of six common thermoluminescent materials. Appl Radiat Isot 68:1988–2000

    Article  CAS  Google Scholar 

  12. Harvey JA, Kearfott KJ (2011) Reproducibility of glow peak fading characteristics of thermoluminescent dosimeters. Radiat Meas 46:319–322

    Article  CAS  Google Scholar 

  13. Harvey JA, Kearfott KJ (2012) Effects of high ambient temperature on glow-peak fading properties of LiF:Mg,Ti thermoluminescent dosemeters. Radiat Prot Dosim 149:109–115

    Article  CAS  Google Scholar 

  14. Weinstein M, German U, Dubinsky S, Alfassi ZB (2003) On the determination of the postirradiation time from the glow curve of TLD100. Radiat Prot Dosim 106:121–130

    Article  CAS  Google Scholar 

  15. Studenski MT, Haverland NP, Kearfott KJ (2007) Simulation, design, and construction of a 137Cs irradiation facility. Health Phys 92:S78–S86

    Article  CAS  Google Scholar 

  16. Parker LW, Harvey JA, Kearfott KJ (2011) An integrated system for the beta, gamma and neutron calibration and storage of thermoluminescent dosimeters for a research laboratory. Health Phys 100:S43–S49

    Article  CAS  Google Scholar 

  17. Harvey JA, Thomas EM, Kearfott KJ (2011) Quantification of various factors influencing the precision of thermoluminescent detector calibrations for new and used chip sets. Health Phys 100:S79–S91

    Article  CAS  Google Scholar 

  18. Simpkins RW, Kearfott KJ (1997) The minimum number of observations necessary to develop an average thermoluminescent dosimeter element correction factor. Radiat Prot Manag 13:55–61

    Google Scholar 

  19. McKeever SWS, Moscovitch M, Townsend PD (1995) Thermoluminescence dosimetry materials: properties and uses. Ramtrans Publishing, Ashford

    Google Scholar 

  20. Harvey JA, Rodrigues ML, Kearfott KJ (2011) A computerized glow curve analysis (GCA) method for WinREMS thermoluminescent dosimeter data using MATLAB. Appl Radiat Isot 69:1282–1286

    Article  CAS  Google Scholar 

  21. Harvey JA, Kearfott KJ (2011) The effects of high ambient radon on thermoluminescence dosimetry readings. Radiat Prot Dosim 147:491–497

    Article  CAS  Google Scholar 

  22. Bos AJJ, Piters TM, Gomez Ros JM, Delgado A (1994) An intercomparison of glow curve analysis computer programs: II. Measured glow curves. Radiat Prot Dosim 51:257–264

    CAS  Google Scholar 

  23. United States Environmental Protection Agency (2012) A citizen’s guide to radon. EPA 402/K-12/002. United States Environmental Protection Agency, Washington

    Google Scholar 

  24. Kearfott KJ (1989) Preliminary experiences with Rn222 in Arizona homes. Health Phys 56:169–179

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Muhammad Rafique is grateful to the Higher Education Commission of Pakistan for providing his postdoctoral fellowship through Grant No. Ref: 2-6(22)/PDFP/HEC/2013/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberlee J. Kearfott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harvey, J.A., Kearfott, K.J. & Rafique, M. Dose response linearity and practical factors influencing minimum detectable dose for various thermoluminescent detector types. J Radioanal Nucl Chem 303, 1711–1718 (2015). https://doi.org/10.1007/s10967-014-3794-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3794-6

Keywords

Navigation