Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 3, pp 2431–2437 | Cite as

A system for the measurement of delayed neutrons and gammas from special nuclear materials

  • M. T. Andrews
  • E. C. Corcoran
  • J. T. Goorley
  • D. G. Kelly


The delayed neutron counting system at the Royal Military College of Canada has been upgraded to accommodate concurrent delayed neutron and gamma measurements. This delayed neutron and gamma counting system uses a SLOWPOKE-2 reactor to irradiate fissile materials before their transfer to a counting arrangement consisting of six 3He and one HPGe detector. The application of this system is demonstrated in an example where delayed neutron and gamma emissions are used in complement to examine 233U content and determine fissile mass with an average relative error and accuracy of −2.2 and 1.5 %, respectively.


Delayed neutron counting Delayed gamma Nuclear forensics MCNP 



Project funding has been provided by a Canadian Nuclear Safety Commission Doctoral Award, and Natural Sciences and Engineering Research Council of Canada. The technical work and assistance of J. Shaw, C. McEwen, K. Nielsen, K. Mattson, and D. Ferguson is much appreciated.


  1. 1.
    Mayer K, Wallenius M, Ray I (2005) Nuclear forensics—a methodology providing clues on the origin of illicitly trafficked nuclear materials. Analyst 130:433–441CrossRefGoogle Scholar
  2. 2.
    Leggitt J, Inn K, Goldberg S, Essex, LaMont S, Chase S (2009) Nuclear forensics–metrological basis for legal defensibility. J Radioanal Nucl Chem 282:997–1001CrossRefGoogle Scholar
  3. 3.
    Grogan KP, O’Kelly DJ (2014) Analytical applications of delayed and instrumental neutron activation analysis. J Radioanal Nucl Chem 299:543–549CrossRefGoogle Scholar
  4. 4.
    The Hague Nuclear Security Summit Communiqué, Nuclear Security Summit 2014. Accessed 28 Oct 2014
  5. 5.
    Canada’s National Statement–Nuclear Security Summit, Nuclear Security Summit 2014. Accessed 28 Oct 2014
  6. 6.
    Consolidated Canadian results to the HEU round robin exercise, Defence Research and Development Canada. Accessed 28 Oct 2014
  7. 7.
    Round robin 3 exercise after action and lessons learned report, International Technical Working Group. Accessed 28 Oct 2014
  8. 8.
    Eriksson SM, Mackey EA, Lindstrom RM, Lamaze GP, Grogan KP, Brady DE (2013) Delayed-neutron activation analysis at NIST. J Radioanal Nucl Chem 298:1819–1822CrossRefGoogle Scholar
  9. 9.
    Kapsimalis R, Glasgow D, Anderson B, Landsberger S (2013) The simultaneous determination of 235U and 239Pu using delayed neutron activation analysis. J Radioanal Nucl Chem 298:1721–1726CrossRefGoogle Scholar
  10. 10.
    Durkee JW, James MR, McKinney GW, Waters LS, Goorley T (2012) The MCNP6 delayed-Particle feature. J Nucl Tech 180:336–354CrossRefGoogle Scholar
  11. 11.
    Keepin GR, Wimett TF, Zeigler RK (1957) Delayed neutrons from fissionable isotopes of uranium, plutonium and thorium. J Nucl Energy 6:IN2–21Google Scholar
  12. 12.
    Myers WL, Goulding CA, Hollas CL (2006) Determination of the 235U enrichment of bulk uranium samples using delayed neutrons. In PHYSOR-2006: Vancouver, Sept 10–14 2006 (CD ROM)Google Scholar
  13. 13.
    Li X, Henkelmann R, Baumgärtner F (2004) Rapid determination of uranium and plutonium content in mixtures through measurement of the intensity-time curve of delayed neutrons. J Nucl Instr Meth Phys Res B 215:246–251CrossRefGoogle Scholar
  14. 14.
    Sellers MT, Corcoran EC, Kelly DG (2012) Simultaneous 233U and 235U characterization through the assay of delayed neutron temporal behaviour. In PHYSOR 2012: Knoxville, Tennessee, April 15-20, 2012Google Scholar
  15. 15.
    Sellers MT, Kelly DG, Corcoran EC (2011) An automated delayed neutron counting system for mass determinations of special nuclear materials. J Radioanal Nucl Chem 291:281–285CrossRefGoogle Scholar
  16. 16.
    Goorley T, James M, Booth T, Brown F, Bull J, Cox LJ, Durkee J, Elson J, Fensin M, Forster RA, Hendricks J, Hughes HG, Johns R, Kiedrowski B, Martz R, Mashnik S, McKinney G, Pelowitz D, Prael R, Sweezy J, Waters L, Wilcox T, Zukaitis T (2012) Initial MCNP6 release overview. J Nucl Tech 180:298–315CrossRefGoogle Scholar
  17. 17.
    Andrews MT, Goorley JT, Corcoran EC, Kelly DG (2014) Modeling the detection of delayed neutron signatures in MCNP6 and comparisons with experimental 233U, 235U, and 239Pu measurements. J Nucl Tech 187:235–243Google Scholar
  18. 18.
    MCNP6.1.1–Beta release notes, Goorley T. Accessed Oct 28 2014
  19. 19.
    Norman EB, Prussin SG, Larimer RM, Shugart H, Browne E, Smith AR, McDonald RJ, Nitsche H, Gupta P, Frank MI, Gosnell TB (2004) Signatures of fissile materials: high-energy γ rays following fission. J Nucl Instr Meth Phys Res A 521:608–610CrossRefGoogle Scholar
  20. 20.
    Beddingfield DH, Cecil FE (1998) Identification of fissile materials from fission product gamma-ray spectra. J Nucl Inst Meth Phys Res A 417:405–412CrossRefGoogle Scholar
  21. 21.
    Marrs RE, Norman EB, Burke JT, Macri RA, Shugart HA, Browne E, Smith AR (2008) Fission-product gamma-ray line pairs sensitive to fissile material and neutron energy. J Nucl Instr Meth Phys Res A 592:463–471CrossRefGoogle Scholar
  22. 22.
    Haciyakupoglu S, Gencay S (1999) Determination of 235U/238U ratio by instrumental neutron activation analysis. J Radioanal Nucl Chem 241:611–616CrossRefGoogle Scholar
  23. 23.
    Hilborn JW, Townes BM (1987) Converting the SLOWPOKE reactor to low enrichment uranium fuel. J Radioanal Nucl Chem 110:385–392CrossRefGoogle Scholar
  24. 24.
    Kennedy G, St-Pierre J, Wang K, Zhang Y, Preston J, Grant C, Vutchkov M (2000) Activation constants for SLOWPOKE and MNS reactors calculated from the neutron spectrum and k 0 and Q 0 values. J Radioanal Nucl Chem 245:167–172CrossRefGoogle Scholar
  25. 25.
    Nguyen TS, Wilkin GB, Atfield JE (2012) Monte carlo calculations applied to slowpoke full-reactor analysis. AECL Nucl Rev 1:43–46CrossRefGoogle Scholar
  26. 26.
    Andrews MT, Goorley JT, Corcoran EC, Kelly DG (2014) Uranium and Plutonium Fission Product Gamma Intensity Measurements and MCNP6 Simulations. Trans Am Nucl Soc 110:490–493Google Scholar
  27. 27.
    Sellers MT, Corcoran EC, Kelly DG (2013) The analysis and attribution of the time-dependent neutron background from sample irradiation in a SLOWPOKE-2 reactor. J Radioanal Nucl Chem 295:1221–1228CrossRefGoogle Scholar
  28. 28.
    Knoll GF (2010) Radiation detection and measurement. Wiley, HobokenGoogle Scholar
  29. 29.
    Huy NQ (2010) The influence of dead layer thickness increase on efficiency decrease for a coaxial HPGe p-type detector. J Nucl Instr Meth Phys Res A 621:390–394CrossRefGoogle Scholar
  30. 30.
    Boson J, Ågren G, Johansson L (2008) A detailed investigation of HPGe detector response for improved Monte Carlo efficiency calculations. Nucl Instr Meth Phys Res A 587:304–314CrossRefGoogle Scholar
  31. 31.
    Padilla Cabal F, Lopez-Pino N, Bernal-Castillo JL, Martinez-Palenzuela Y, Aguilar-Mena J, D’Alessandro K, Arbelo Y, Corrales Y, Diaz O (2010) Monte Carlo based geometrical model for efficiency calculation of an n-type HPGe detector. Appl Radiat Isot 68:2403–2408CrossRefGoogle Scholar
  32. 32.
    Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • M. T. Andrews
    • 1
    • 2
  • E. C. Corcoran
    • 1
  • J. T. Goorley
    • 2
  • D. G. Kelly
    • 1
  1. 1.Royal Military College of CanadaKingstonCanada
  2. 2.Monte Carlo Codes and Radiation Transport ApplicationsLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations