Skip to main content
Log in

Green methods for the radiochemical separations of no-carrier-added 61Cu, 62Zn from 7Li irradiated cobalt target

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A natCo target was irradiated with 47 MeV 7Li beam to produce no-carrier-added 61Cu, 62Zn in the target matrix. Two new green radiochemical methods were developed for separation of 61Cu and 62Zn from the target matrix, (i) liquid–liquid extraction (LLX) technique using room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]) and ammonium pyrrolidinedithiocarbamate (APDC) (ii) adsorption on calcium alginate beads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  2. Ali M, Sarkar A, Tariq M, Ali A, Pandey S (2007) Dilute aqueous 1-butyl-3-methylimidazolium hexafluorophosphate: properties and solvatochromic probe behavior. Green Chem 09:1252–1258

    Article  CAS  Google Scholar 

  3. Wei G-T, Yang Z, Chen C-J (2003) Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions. Anal Chim Acta 488:183–192

    Article  CAS  Google Scholar 

  4. Carda-Broch S, Berthod A, Armstrong DW (2003) Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Anal Bioanal Chem 375:191–199

    CAS  Google Scholar 

  5. Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 05:361–363

    Article  CAS  Google Scholar 

  6. Nayak D, Banerjee A, Lahiri S (2007) Separation of no-carrier-added 66,67Ga produced in heavy ion induced cobalt target using alginate biopolymers. Appl Radiat Isot 65:891–896

    Article  CAS  Google Scholar 

  7. Nayak D, Lahiri S (2009) Immobilisation of no-carrier-added 93mMo on a biopolymer calcium alginate: a candidate radiopharmacutical. J Radioanal Nucl Chem 281:181–183

    Article  CAS  Google Scholar 

  8. Mandal A, Lahiri S (2011) Separation of 134Cs and 133Ba radionuclides by calcium alginate beads. J Radioanal Nucl Chem 290:115–118

    Article  CAS  Google Scholar 

  9. Nayak D, Lahiri S (2006) Biosorption of toxic, heavy, no-carrier-added radionuclides by calcium alginate beads. J Radioanal Nucl Chem 267:59–65

    Article  CAS  Google Scholar 

  10. Nayak D, Banerjee A, Roy S, Lahiri S (2007) Speciation dependent radiotracer studies on chromium absorption using various alginate biopolymers. J Radioanal Nucl Chem 274:219–224

    Article  CAS  Google Scholar 

  11. Banerjee A, Nayak D, Lahiri S (2007) Speciation-dependent studies on removal of arsenic by iron-doped calcium alginate beads. Appl Radiat Isot 65:769–775

    Article  CAS  Google Scholar 

  12. Banerjee A, Nayak D, Lahiri S (2007) A new method of synthesis of iron doped calcium alginate beads and determination of iron content by radiometric method. Biochem Eng J 33:260–262

    Article  CAS  Google Scholar 

  13. Konishi Y, Asai S, Midoh Y, Oku M (1993) Recovery of zinc, cadmium, and lanthanum by biopolymer gel particles of alginic acid. Sep Sci Technol 28:1691–1702

    Article  CAS  Google Scholar 

  14. Jang LK, Lopez SL, Eastman SL, Pryfogle P (1991) Recovery of copper and cobalt by biopolymer gels. Biotechnol Bioeng 37:266–273

    Article  CAS  Google Scholar 

  15. Jang LK, Nguyen D, Geesey GG (1999) Selectivity of alginate gel for Cu over Zn when acidic conditions prevail. Wat Res 33:2817–2825

    Article  CAS  Google Scholar 

  16. Sadeghi M, Zandi M, Bakhtiari M (2012) Nuclear model calculation for cyclotron production of 61Cu as a PET imaging. J Radioanal Nucl Chem 292:777–783

    Article  CAS  Google Scholar 

  17. Green MA, Mathias CJ, Welch MJ, McGuire AH, Perry D, Fernandez-Rubio F, Perlmutter JS, Raichle ME, Bergmann RB (1990) Copper-62-labeled pyruvaldehydebis(N4-methylthiosemisemicarbazonato)copper (II): synthesis and evaluation as a positron emission tomography tracer for cerebral and myocardial perfusion. J Nucl Med 31:1989–1996

    CAS  Google Scholar 

  18. Fukumura T, Okada K, Suzuki H, Nakao R, Mukai K, Szelecsényi F, Kovács Z, Suzuki K (2006) An improved 62Zn/62Cu generator based on a cation exchanger and its fully remote-controlled preparation for clinical use. Nucl Med Biol 33:821–827

    Article  CAS  Google Scholar 

  19. Aghanejad A, Jalilian AR, Fazaeli Y, Beiki D, Fateh B, Khalaj A (2014) Radiosynthesis and biodistribution studies of [62Zn/62Cu]–plerixafor complex as a novel in vivo PET generator for chemokine receptor imaging. J Radioanal Nucl Chem 299:1635–1644

    Article  CAS  Google Scholar 

  20. Szelecsényi F, Blessing G, Qaim SM (1993) Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni: possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl Radiat Isot 44:575–580

    Article  Google Scholar 

  21. Tolmachev V, Lundqvist H, Einarsson L (1998) Production of 61Cu from a natural nickel target. Appl Radiat Isot 49:79–81

    Article  CAS  Google Scholar 

  22. Szelecsényi F, Steyn GF, Kovács Z, van der Walt TN, Suzuki K (2006) Comments on the feasibility of 61Cu production by proton irradiation of natZn on a medical cyclotron. Appl Radiat Isot 64:789–791

    Article  Google Scholar 

  23. Thieme S, Walther M, Preusche S, Rajander J, Pietzsch H, Lill J, Kaden M, Solin O, Steinbach J (2013) High specific activity 61Cu via 64Zn(p,α)61Cu reaction at low proton energies. Appl Radiat Isot 72:169–176

  24. Rowshanfarzad P, Sabet M, Jalilian AR, Kamalidehghan M (2006) An overview of copper radionuclides and production of 61Cu by proton irradiation of natZn at a medical cyclotron. Appl Radiat Isot 64:1563–1573

    Article  CAS  Google Scholar 

  25. Uddin MS, Khandaker MU, Kim KS, Lee YS, Kim GN (2007) Excitation functions of the proton induced nuclear reactions on natZn up to 40 MeV. Nucl Instr Meth B 258:313–320

    Article  CAS  Google Scholar 

  26. Tárkányi F, Takács S, Ditrói F, Hermanne A, Sonck M, Shubin Y (2004) Excitation functions of deutron induced nuclear reactions on natural Zn up to 50 MeV. Nucl Instr Meth B 217:531–550

    Article  Google Scholar 

  27. Daraban L, Abbas K, Simonelli F, Adam-Rebeles R, Gibson N (2008) Experimental study of excitation functions for the deuteron induced reactions 64Zn(d,2p)64Cu and 64Zn(d,αn)61Cu using the stacked-foil technique. Appl Radiat Isot 66:261–264

    Article  CAS  Google Scholar 

  28. Fenyvesi A, Tárkányi F, Heselius S-J (2004) Excitation functions of nuclear reactions induced by 3He-particles on cobalt. Nucl Instr Meth B 222:355–363

    Article  CAS  Google Scholar 

  29. Szelecsényi F, Kovács Z, Suzuki K, Okada K, Fukumura T, Mukai K (2004) Formation of 60Cu and 61Cu via Co + 3He reactions up to 70 MeV: production possibility of 60Cu for PET studies. Nucl Instr Meth B 222:364–370

    Article  Google Scholar 

  30. Fukumura T, Okada K, Szelecsényi F, Kovács Z, Suzuki K (2004) Practical production of 61Cu using natural Co target and its simple purification with a chelating resin for 61Cu-ATSM. Radiochim Acta 92:209–214

    Article  CAS  Google Scholar 

  31. Hao G, Fukumura T, Nakao R, Suzuki H, Szelecsényi F, Kovács Z, Suzuki K (2009) Cation exchange separation of 61Cu2+ from natCo targets and preparation of 61Cu-DOTA-HAS as a blood pool agent. Appl Radiat Isot 67:511–515

    Article  CAS  Google Scholar 

  32. Das SS, Chattopadhyay S, Barua L, Das MK (2012) Production of 61Cu using natural cobalt target and its separation using ascorbic acid and common anion exchange resin. Appl Radiat Isot 70:365–368

    Article  CAS  Google Scholar 

  33. Kopecký P (1985) Proton beam monitoring via the Cu(p,x)58Co, 63Cu(p,2n)62Zn and 65Cu(p,n)65Zn reactions in copper. Int J Appl Radiat Isot 36:657–661

    Article  Google Scholar 

  34. Suzuki K, Iwata R (1977) A multi-target assembly in an irradiation with high energy particles. Simultaneous production of 123I, 62Zn and 13NH3. Int J Appl Radiat Isot 28:663–665

    Article  CAS  Google Scholar 

  35. Aydin A, Sarer B, Tel E (2007) New calculation of excitation functions of proton-induced reactions in some medical isotopes of Cu, Zn and Ga. Appl Radiat Isot 65:365–370

    Article  CAS  Google Scholar 

  36. Bormans G, Janssen A, Adriaens P, Crombez D, Witsenboer A, Goeij JD, Mortelmans L, Verbruggen A (1992) A 62Zn/62Cu generator for the routine production of 62Cu-PTSM. Appl Radiat Isot 43:1437–1441

    Article  CAS  Google Scholar 

  37. Robinson GD Jr, Zielinski FW, Lee AW (1980) The zinc-62/copper-62 generator: a convenient source of copper-62 for radiopharmaceuticals. Int J Appl Radiat Isot 31:111–116

    Article  CAS  Google Scholar 

  38. Neirinckx RD (1977) Excitation function for the 60Ni(α,2n)62Zn reaction and production of 62Zn bleomycin. Int J Appl Radiat Isot 28:808–809

    Article  CAS  Google Scholar 

  39. Lahiri S, Banerjee S, Das NR (1997) Separation of carrier free 65Zn and 66,67,68Ga, the alpha-particle activation products of copper with HDEHP. J Radioanal Nucl Chem 218:215–218

    Article  CAS  Google Scholar 

  40. Lahiri S, Banerjee S, Das NR (1997) Simultaneous production of carrier-free 65Zn and 66,67,68Ga in α-particle activated copper target and their separation with TOA. Appl Radiat Isot 48:15–18

    Article  CAS  Google Scholar 

  41. Lahiri S, Nayak D (2002) Tracer packet: a new conception for the production of tracers of micronutrient elements. J Radioanal Nucl Chem 254:289–292

    Article  CAS  Google Scholar 

  42. Nayak D, Lahiri S (2003) Sequential separation of 61Cu, 62,63Zn, 66,67,68Ga, 71,72As and 73Se produced by heavy ion activation on cobalt target. J Nucl Radiochem Sci 04:01–03

    Article  Google Scholar 

  43. Sarkar S, Nayak D, Lahiri S (2007) Studies on the interaction of poly(N-vinylpyrrolidone) with no-carrier-added 61Cu, 62Zn, 66Ga, 69Ge, and 71As using tracer packet technique. Radiochim Acta 95:467–470

    Article  CAS  Google Scholar 

  44. Lahiri S, Sarkar S (2008) Separation of no-carrier-added Tl and Pb radionuclides using poly (N-vinylpyrrolidone). J Radioanal Nucl Chem 277:513–516

    Article  CAS  Google Scholar 

  45. Lahiri S, Sarkar S (2007) Separation of iron and cobalt using 59Fe and 60Co by dialysis of polyvinylpyrrolidone-metal complexes: a greener approach. Appl Radiat Isot 65:387–391

    Article  CAS  Google Scholar 

  46. Dutta B, Lahiri S, Tomar BS (2013) Application of PEG based aqueous biphasic systems in extraction and separation of no-carrier-added 183Re from bulk tantalum. Radiochim Acta 101:19–26

    Article  CAS  Google Scholar 

  47. Roy K, Lahiri S (2009) Extraction of Hg(I), Hg(II) and methylmercury using polyethylene glycol based aqueous biphasic system. Appl Radiat Isot 67:1781–1784

    Article  CAS  Google Scholar 

  48. Ghosh K, Maiti M, Lahiri S (2013) Separation of no-carrier-added 109Cd from natural silver target using RTIL 1-butyl-3-methylimidazolium hexafluorophosphate. J Radioanal Nucl Chem 298:1049–1054

    Article  CAS  Google Scholar 

  49. Tarasov OB, Bazin D (2003) Development of the program LISE: application to fusion–evaporation. Nucl Instrum Method B 204:174–178

  50. Hulanicki A (1967) Complexation reactions of dithiocarbamates. Talanta 14:1371–1392

    Article  CAS  Google Scholar 

  51. Zhang C, Malhotra SV, Francis AJ (2011) Toxicity of imidazolium- and pyridinium-based ionic liquids and the co-metabolic degradation of N-ethylpyridiniumtetrafluoroborate. Chemosphere 82:1690–1695

    Article  CAS  Google Scholar 

  52. Hajfarajollah H, Mokhtarani B, Noghabi KA, Sharifi A, Mirzaei M (2014) Antibacterial and antiadhesive properties of butyl-methylimidazolium ionic liquids toward pathogenic bacteria. RSC Adv. doi:10.1039/C4RA07055K

    Google Scholar 

Download references

Acknowledgments

We are thankful to BARC-TIFR Pelletron staff for their help and co-operation during the experiment. The financial support of the SINP-DAE 12 five year plan project “Trace Ultratrace Analysis and Isotope Production (TULIP)” is gratefully acknowledged. KG is thankful to the Council of Scientific and Industrial Research (CSIR) for providing necessary fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moumita Maiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiti, M., Ghosh, K. & Lahiri, S. Green methods for the radiochemical separations of no-carrier-added 61Cu, 62Zn from 7Li irradiated cobalt target. J Radioanal Nucl Chem 303, 2033–2040 (2015). https://doi.org/10.1007/s10967-014-3767-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3767-9

Keywords

Navigation