Skip to main content
Log in

Dosimetric characteristics of mercury and cerrobend blocks in megavoltage radiation therapy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study some dosimetric parameters of mercury was investigated and compared with cerrobend as a common beam attenuator material. Experimental dosimetry for different thicknesses of cerrobend and mercury was done at 6 and 18 MV photon beams. With augmentation of the attenuator thickness, d max and beam quality index increased at 6 MV but at 18 MV, beam softening happened. The transmission values increased with field size increment and linear attenuation coefficient decreases slightly as the thickness of the attenuating filter increased. The attenuation ability of mercury was about 1.44 times more than cerrobend and it can be proposed as a beam modifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van Dyk J (2005) The modern technology of radiation oncology, a compendium for medical physicist and radiation oncologists. Medical Physics Publishing, Madison

    Google Scholar 

  2. Matsumoto Y, Umezu Y, Fujibuchi T, Noguchi Y, Fukunaga J, Kimura T et al (2014) Verification of the protective effect of a testicular shield in postoperative radiotherapy for seminoma. Nihon Hoshasen Gijutsu Gakkai Zasshi 70(9):883–887

    Article  Google Scholar 

  3. Craciunescu OI, Steffey BA, Kelsey CR, Larrier NA, Paarz-Largay CJ, Prosnitz RG et al (2011) Renal shielding and dosimetry for patients with severe systemic sclerosis receiving immunoablation with total body irradiation in the scleroderma: cyclophosphamide or transplantation trial. Int J Radiat Oncol 79(4):1248–1255

    Article  Google Scholar 

  4. Du Plessis FCP, Willemse CA (2003) Monte Carlo calculation of effective attenuation coefficient for various compensator materials. Med Phys 30:2537–2543

    Article  Google Scholar 

  5. Bartrum T, Bailey M, Nelson V, Grace M (2007) Linear attenuation coefficients for compensator based IMRT. Australas Phys Eng Sci Med 30(4):281–287

    Article  CAS  Google Scholar 

  6. Robinson J, Opp D, Zhang G, Feygelman V (2013) Evaluation of inhomogeneity correction factors for 6 MV flattening filter-free beams with brass compensators. J Appl Clin Med Phys 14(3):3990

    Google Scholar 

  7. Robinson J, Opp D, Zhang G, Cashon K, Kozelka J, Hunt D et al (2012) Evaluating dosimetric accuracy of flattening filter free compensator-based IMRT: measurements with diode arrays. Med Phys 39(1):342–352

    Article  Google Scholar 

  8. Tajiri M, Sunaoka M, Fukumura A, Endo M (2004) A new radiation shielding block material for radiation therapy. Med Phys 31(11):3022–3023

    Article  Google Scholar 

  9. Fujimoto T, Monzen H, Nakata M, Okada T, Yano S, Takakura T et al (2014) Dosimetric shield evaluation with tungsten sheet in 4, 6, and 9 MeV electron beams. Phys Med 2:336

    Google Scholar 

  10. Fujita Y, Myojoyama A, Saitoh H (2014) Bremsstrahlung and photoneutron production in a steel shield for 15–22 MeV clinical electron beams. Radiat Prot Dosim 12.doi: 10.1093/rpd/ncu153

  11. Dimitriadis DM, Fallone BG (2002) Compensators for intensity-modulated beams. Med Dosim 27(3):215–220

    Article  CAS  Google Scholar 

  12. Wojcicka JB, Yankelevich R, Werner BL, Lasher DE (2008) Technical note: on cerrobend shielding for 18–22 MeV electron beams. Med Phys 35(10):4625–4629

    Article  Google Scholar 

  13. Pirani LF, Moreira MV, Costa JJ, Oliveira LN, Caldas LV, de Almeida A (2013) Fricke dosimeter gel measurements of the profiles of shielded fields. Appl Radiat Isot 82:239–241

    Article  CAS  Google Scholar 

  14. Mejaddem Y, Hyodynmaa S, Brahme A (2000) Photon scatter in intensity modulating filters evaluated by first Compton scatter and Monte Carlo calculations and experiments in broad beams. Phys Med Biol 45(10):2747–2760

    Article  CAS  Google Scholar 

  15. Chang SX, Cullip TJ, Deschesne KM (2000) Intensity modulation delivery techniques: “step & shoot” MLC auto-sequence versus the use of a modulator. Med Phys 27(5):948–959

    Article  CAS  Google Scholar 

  16. Xu T, Shikhaliev PM, Al-Ghazi M, Molloi S (2002) Reshapable physical modulator for intensity modulated radiation therapy. Med Phys 29(10):2222–2229

    Article  Google Scholar 

  17. Yoda K, Aoki Y (2003) A multiportal compensator system for IMRT delivery. Med Phys 30(5):880–886

    Article  Google Scholar 

  18. Chang SX, Cullip TJ, Deschesne KM, Miller EP, Rosenman JG (2004) Compensators: an alternative IMRT delivery technique. J Appl Clin Med Phys 5(3):15–36

    Article  Google Scholar 

  19. Nakagawa K, Fukuhara N, Kawakami H (2005) A packed building-block compensator (TETRIS-RT) and feasibility for IMRT delivery. Med Phys 32(7):2231–2235

    Article  Google Scholar 

  20. Sasaki K, Obata Y (2007) Dosimetric characteristics of a cubic-block-piled compensator for intensity-modulated radiation therapy in the Pinnacle radiotherapy treatment planning system. J Appl Clin Med Phys 8(1):85–100

    Google Scholar 

  21. Srivastava RP, De Wagter C (2007) The value of EDR2 film dosimetry in compensator-based intensity modulated radiation therapy. Phys Med Biol 52(19):N449–N457

    Article  CAS  Google Scholar 

  22. Al-Sharkwy A, Sharshar T, Badran HM (2009). Evaluation of mercury as a passive shielding for low-level gamma-ray spectrometers. In: 7th conference on nuclear and particle physics, Egypt

  23. Tajiri M, Tokiya Y, Uenishi J, Sunaoka M, Watanabe K (2006) New shielding materials for clinical electron beams. Radiother Oncol 80(3):391–393

    Article  CAS  Google Scholar 

  24. Brouwer WF, Kazem I, van Mil CJ (1984) Four years experience with a mercury shielded irregular field system (MSIFS). Int J Radiat Oncol Biol Phys 10(2):225–229

    Article  CAS  Google Scholar 

  25. Park J, Choi C, Ye S (2012) Photon energy-modulated radiotherapy: Monte Carlo simulation and treatment planning study. Med Phys 39(3):1265–1277

    Article  CAS  Google Scholar 

  26. IAEA (2004) Absorbed dose determination in electron beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. IAEA technical report series no. 398

  27. Tahmasebi-Birgani MJ, Seif F, Chegeni N, Bayatiani MR (2012) Determination of the effective atomic and mass numbers for mixture and compound materials in high energy photon interactions. J Radioanal Nucl Chem 292(3):1367–1370

    Article  CAS  Google Scholar 

  28. Islam MK, Van Dyk J (1995) Effects of scatter generated by beam-modifying absorbers in megavoltage photon beams. Med Phys 22(12):2075–2081

    Article  CAS  Google Scholar 

  29. Charland PM, Chetty IJ, Yokoyama S, Fraass BA (2003) Dosimetric comparison of extended dose range film with ionization measurements in water and lung equivalent heterogeneous media exposed to megavoltage photons. J Appl Clin Med Phys 4(1):25–39

    Article  Google Scholar 

  30. Butson MJ, Yu PK, Cheung T (2003) Rounded end multi-leaf penumbral measurements with radiochromic film. Phys Med Biol 48(17):N247–N252

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Ahvaz Jundishapur University of Medical Sciences (Grant Number: u-90083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Seif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahmasebi-Birgani, M.J., Seif, F. & Bayatiani, M.R. Dosimetric characteristics of mercury and cerrobend blocks in megavoltage radiation therapy. J Radioanal Nucl Chem 303, 1843–1850 (2015). https://doi.org/10.1007/s10967-014-3721-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3721-x

Keywords

Navigation