Skip to main content
Log in

Neural network unfolding of neutron spectrum measured by gold foil-based Bonner sphere

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Bonner sphere spectrometer (BSS) based on gold foils, as thermal neutron detectors, is one of the common device for neutron spectrometry. In this paper, the response functions of the Bonner spheres were determined for neutrons with energies ranging from thermal up to 20 MeV using Monte Carlo code. To verify the simulated response functions, the spheres of BSS were irradiated with 241Am-Be neutron source at the Ferdowsi University of Mashhad and the activities of the gold foils were measured. Then the artificial neural network was applied for neutron spectrum unfolding. The results showed a good agreement between unfolded and reference spectrum of ISO 8529-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bramblett RL, Ewing RI, Bonner TW (1960) A new type of neutron spectrometer. Nucl Instrum Methods 9(1):1–12

    Article  Google Scholar 

  2. Alevra AV, Thomas DJ (2003) Neutron spectrometry in mixed fields: multisphere spectrometers. Radiat Prot Dosim 107(1–3):37–72

    Article  CAS  Google Scholar 

  3. Bedogni R, Ferrari P, Gualdrini G, Esposito A (2010) Design and experimental validation of a Bonner sphere spectrometer based on dysprosium activation foils. Radiat Meas 45(10):1201–1204

    Article  CAS  Google Scholar 

  4. Braga CC, Dias MS (2002) Application of Neural Networks for unfolding neutron spectra measured by means of Bonner spheres. Nucl Instrum Methods A 476(1):252–255

    Article  CAS  Google Scholar 

  5. Vylet V (2002) Response matrix of an extended Bonner sphere system. Nucl Instrum Methods A 476(1–2):26–30

    Article  CAS  Google Scholar 

  6. Khabaz R, Miri SH (2011) Development of a Bonner sphere spectrometer with emphasis on decreasing the contribution of scattering by using a new designed shadow cone. J Radioanal Nucl Chem 289:789–794

    Article  CAS  Google Scholar 

  7. Vega Carrillo HR, Wehring BW, Veinot KG, Hertel NE (1999) Response matrix for a multi sphere spectrometer using a 6 lif thermoluminescence dosemeter. Radiat Prot Dosim 81(2):133–140

    Article  CAS  Google Scholar 

  8. Mazrou H, Idiri Z, Sidahmed T, Allab M (2010) MCNP5 evaluation of a response matrix of a Bonner sphere spectrometer with a high efficiency 6LiI (Eu) detector from 0.01 eV to 20 MeV neutron. J Radioanal Nucl Chem 284:253–263

    Article  CAS  Google Scholar 

  9. Vega-Carrillo HR, Ortiz-Hernandez A, Hernandez-Davila VM, Hernandez-Almaraz B, Teodoro RM (2010) H*(10) and neutron spectra around LINACs. J Radioanal Nucl Chem 283:537–540

    Article  CAS  Google Scholar 

  10. Thomas DJ, Bardell AG, Macaulay EM (2002) Characterization of a gold foil-based Bonner sphere set and measurements of neutron spectra at a medical accelerator. Nucl Instrum Methods A 476:31–35

    Article  CAS  Google Scholar 

  11. Wang Z, Hutchinson JD, Hertel NE, Burgett E, Howell RM (2008) Study of a gold-foil-based multi sphere neutron spectrometer. Radiat Prot Dosim 128(3):289–293

    Article  CAS  Google Scholar 

  12. Lindemann L, Zech G (1995) Unfolding by weighting Monte Carlo events. Nucl Instrum Methods Phys ResA 354:516–521

    Article  CAS  Google Scholar 

  13. Reginatto M, Goldhagen P, Neumann S (2002) Spectrum unfolding sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code MAXED. Nucl Instrum Methods Phys Res A 476(1–2):242–246

    Article  CAS  Google Scholar 

  14. Freeman DW, Edwards DR, Bolon AE (1999) Genetic algorithms-a new technique for solving the neutron spectrum unfolding problem. Nucl Instrum Methods Phys Res A 425(3):549–576

    Article  CAS  Google Scholar 

  15. Mukherjee B (2002) A high-resolution neutron spectra unfolding method using the genetic algorithm technique. Nucl Instrum Methods Phys Res A 476(1–2):247–251

    Article  CAS  Google Scholar 

  16. Sharghi Ido A, Bonyadi MR, Etaati GR, Shahriari M (2009) Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks. Appl Radiat Isot 67(10):1912–1918

    Article  CAS  Google Scholar 

  17. Ortiz R, Martinez B, Vega C, Gallego D, Lorente F, Mendez V, Los Arcos M, Guerrero A (2011) Performance of artificial neural networks and genetical evolved artificial neural networks unfolding techniques. Rev Mex De Fis S 57(1):89–92

    Google Scholar 

  18. Kardan MR, Setayeshi S, Koohi-Fayegh R, Ghiassi-Nejad M (2003) Neutron spectra unfolding in Bonner spheres spectrometry using neural networks. Radiat Prot Dosim 104(1):27–30

    Article  CAS  Google Scholar 

  19. Rosario MB, Manuel ORJ G, Vega-Carrillo HR (2008) A new computer tool based on ANN technology, applied in neutron spectrometry and dosimetry research areas, IEEE 189–194

  20. Ortiz-Rodriguez JM, Reyes Alfaro A, Reyes Haro A, Cervantes Viramontes JM, Vega-Carrillo HR (2014) A neutron spectrum unfolding computer code based on artificial neural networks. Radiat Phys Chem 95:428–431

    Article  CAS  Google Scholar 

  21. Begdoni R, Domingo C, Esposito A, Frenandez F (2007) FRUIT: an operational tool for multi sphere neutron spectrometry in workplaces. Nucl Instrum Methods Phys Res A 580:1301–1309

    Article  Google Scholar 

  22. Briesmeister JF (2000) A general Monte Carlo N-particle transport code. Los Alamos National Laboratory Report LA-13709-M MCNPTM

  23. ISO 8529-1 (2001) Reference neutron radiations-part 1: characteristic and methods of productions. International Organization for Standardization, Geneva

    Google Scholar 

  24. Demuth H, Beale M (2002) Neural network toolbox for use with MATLAB, User guide version 4 (The Math Works, Inc.)

  25. Vega-Carrillo HR, Hernandez Davila VM, Manzanares AE, Gallego E, Lorente A, Iniguez MP (2007) Artificial neural networks technology for neutron spectrometry and dosimetry. Radiat Prot Dosim 126:408–412

    Article  CAS  Google Scholar 

  26. ISO 8529–2 (2000) Reference neutron radiations-part 2: calibration fundamentals of radiation protection devices related to the basic quantities characterizing the radiation field. International Organization for Standardization, Geneva

    Google Scholar 

  27. Gallego E, Lorente A, Vega-Carrillo HR (2004) Characteristics of the neutron field of the facility at DIN-UPM. Radiat Prot Dosim 110:73–79

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hashem Miri Hakimabad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, N., Hakimabad, H.M. & Motavalli, L.R. Neural network unfolding of neutron spectrum measured by gold foil-based Bonner sphere. J Radioanal Nucl Chem 303, 1687–1693 (2015). https://doi.org/10.1007/s10967-014-3650-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3650-8

Keywords

Navigation