Skip to main content
Log in

Natural environmental radioactivity and the corresponding health risk in Johor Bahru District, Johor, Malaysia

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study aims to obtain the baseline data on environmental terrestrial radiation and to assess the corresponding health risk in Johor Bahru District, Johor, Malaysia. The mean activity concentrations of 232Th, 226Ra and 40K were 119 ± 6, 51 ± 4 and 158 ± 21 Bq kg−1, respectively. Primordial radionuclide 232Th is the main contributor to gamma dose rate and the mean found to be 135 nGy h−1. Gross alpha and gross beta activity concentrations in water were 0.012 ± 0.003 and 0.234 ± 0.018 Bq L−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. United Nations Scientific Committee on the Effects of Atomic Radiations (UNSCEAR) (1993) Sources, effects and risks of ionising radiation. United Nations, New York

    Google Scholar 

  2. United Nations Scientific Committee on the Effect Atomic Radiation (UNSCEAR) (2000) Sources and effects of ionizing radiation. UNSCEAR report on the general asembly. United Nations, New York

    Google Scholar 

  3. Zikovsky Lubomir (2006) Alpha radioactivity in drinking water in Quebec, Canada. Environ Radioact 88(3):306–309

    Article  CAS  Google Scholar 

  4. Interim National Water Quality Standards for Malaysia (INWQS) (2010). Malaysia environmental quality report. Department of Environment. Ministry of Natural Resources and Environment Malaysia

  5. WHO (1993) Guidelines for drinking water quality, recommendations: water, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  6. Gabdo HT, Ramli AT, Sanusi MS, Saleh MA, Garba NN (2014) Terrestrial gamma dose rate in Pahang State Malaysia. J Radioanal Nucl Chem 299(3):1793–1798

    Article  CAS  Google Scholar 

  7. Ramli AT, Apriantoro NH, Wagiran H, Wood AK, Kuan LS (2009) Health risk implications of high background radiation dose rate in Kampung Sungai Durian, Kinta District, Perak, Malaysia. Glob J Health Sci 1:P140

    Google Scholar 

  8. Ramli AT, Apriantoro NH, Wagiran H (2009) Assessment of radiation dose rates in the high terrestrial gamma radiation area of Selama District, Perak, Malaysia. Appl Phys Res 1(2):P45

    Article  Google Scholar 

  9. Ramli AT, Sahrone S, Wagiran H (2005) Terrestrial gamma radiation dose study to determine the baseline for environmental radiological health practices in Melaka State, Malaysia. J Radiat Prot 25:435

    Article  Google Scholar 

  10. Ramli AT, Rahman ATA, Lee M (2003) Statistical prediction of terrestrial gamma radiation dose rate based on geological features and soil types in Kota Tinggi District, Malaysia. Appl Radiat Isot 59:393–405

    Article  CAS  Google Scholar 

  11. Ramli AT, Hussein AW, Lee M (2001) Geological influence on terrestrial gamma radiation dose rate in the Malaysian State of Johor. Appl Radiat Isot 54:327–333

    Article  CAS  Google Scholar 

  12. Ramli AT (1997) Environmental terrestrial gamma radiation dose and its relationship with soil type and underlying geological formations in Pontian District, Malaysia. Appl Radiat Isot 48:407–412

    Article  CAS  Google Scholar 

  13. Saleh MA, Ramli AT, Alajerami Y, Aliyu AS, Bt Basri NA (2013) Radiological study of Mersing District, Johor, Malaysia. Radiat Phys Chem 85:107–117

    Article  CAS  Google Scholar 

  14. Saleh MA, Ramli AT, Alajerami Y, Aliyu AS (2013) Assessment of environmental 226Ra, 232Th and 40K concentrations in the region of elevated radiation background in Segamat District, Johor, Malaysia. J Environ Radioact 124:130–140

  15. Saleh MA, Ramli AT, Alajerami Y, Aliyu AS (2013) Assessment of natural radiation levels and associated dose rates from surface soils in Pontian District, Johor, Malaysia. J Ovonic Res 9:17–27

  16. Lee SK, Wagiran H, Ramli AT, Apriantoro NH, Wood AK (2009) Radiological monitoring: terrestrial natural radionuclides in Kinta District, Perak, Malaysia. J Environ Radioact 100:368–374

    Article  CAS  Google Scholar 

  17. Abdul Rahman A, Ramli AT (2007) Radioactivity levels of 238U and 232Th, the a and b activities and associated dose rates from surface soil in Ulu Tiram, Malaysia. J Radioanal Nucl Chem 273:653–657

    Article  CAS  Google Scholar 

  18. Ramli AT, Hussein AW, Wood AK (2005) Environmental 238U and 232Th concentration measurements in an area of high level natural background radiation at Palong, Johor, Malaysia. J Environ Radioact 80:287–304

    Article  CAS  Google Scholar 

  19. Department of Statistical Malaysia (2010) Basic population characteristics by administrative District. http://www.statistics.gov.my/mycensus2010/index.php?option=comcontent&view=article&id=158&lang=en. Accessed Dec 2013

  20. Department of Geological Survey (1982) Map of mineral resources in Johor State, Malaysia, 1st edn. Ipoh, Johor Bahru

    Google Scholar 

  21. Department of Agriculture Peninsular Malaysia (1973). Map of soil types in Peninsular Malaysia L-40A series 1. Taylor & Francis, Kuala Lumpur

  22. Parmanathan S (1978) Register of soils, Peninsular Malaysia. Soils and analytical services, Bulletin 7. Ministry of Agriculture, Kuala Lumpur

    Google Scholar 

  23. Laxen DP, Harrison RM (1981) Cleaning methods for polythene containers prior to the determination of trace metals in fresh water samples. Anal Chem 53:345–350

    Article  CAS  Google Scholar 

  24. Younis M, Subhani M, Khan K, Orfi S (2005) Radioactivity mapping of north western areas of Pakistan. J Radioanal Nucl Chem 266:325–332

    Article  CAS  Google Scholar 

  25. Seddeek M, Badran H, Sharshar T, Elnimr T (2005) Characteristics, spatial distribution and vertical profile of gamma-ray emitting radionuclides in the coastal environment of North Sinai. J Environ Radioact 84:21–50

    Article  CAS  Google Scholar 

  26. Krieger HL (1975) Radiochemical methodology for drinking water, vol 1. Environmental Monitoring and Supporting Laboratory, New York

    Google Scholar 

  27. Degerlier M, Karahan G (2010) Natural radioactivity in various surface waters in Adana, Turkey. Desalination 261:126–130

    Article  CAS  Google Scholar 

  28. Environmental Protection Agency (EPA) (1979) Radiochemical analytical procedures for analysis of environmental samples, EPA EY-76-A-08-0539. US Department of Energy. http://www.health.state.mn.us/divs/phl/accreditation/docs/refmethodepa053917.pdf. Accessed Dec 2013

  29. Lavi N, Groppi F, Alfassi ZB (2004) On the measurement of 40K in natural and synthetic materials by the method of high-resolution gamma-ray spectrometry. Radiat Meas 38:139–143

    Article  CAS  Google Scholar 

  30. Parmaksız A (2013) Measurement of naturallyoccurring radionuclides in geothermal samples and assessment of radiological risks and radiation doses. Radiat Prot Dosim 157(4):585–593

    Article  Google Scholar 

  31. International Atomic Energy Agency (1989) Measurement of radionuclides in food and the environment. Technical report series 295, a guidebook. IAEA, Vienna

    Google Scholar 

  32. International Atomic Energy Agency (2003) Guidelines for radioelement mapping using gamma ray spectrometry data. IAEA-TECDOC-1363. IAEA, Vienna

    Google Scholar 

  33. Saleh MA, Ramli AT, Alajerami Y, Mhareb MH, Aliyu AS, Gabdo HT, Garba NN (2014) Assessment of radiological health implicat from ambient environment in the Muar district, Johor, Malaysia. Radiat Phys Chem 103:243–252

  34. Saleh MA, Ramli AT, Alajerami Y, Hashim S, Aliyu AS, Bt Basri NA (2013) Terrestrial gamma radiation and its statistical relation with geological formation in the Mersing District, Johor, Malaysia. Radiat Prot Dosim. 156:246–252

  35. Norbani NE, Salim NAA, Saat A, Hamzah Z, Ramli AT, Idris WMRW, Jaafar MZ, Bradley DA, Rahman ATA (2014) Terrestrial gamma radiation dose rates (TGRD) from surface soil in Negeri Sembilan, Malaysia. Radiat Phys Chem. doi:10.1016/j.radphyschem.2014.04.008

    Google Scholar 

  36. Saleh MA, Ramli AT, Alajerami Y, Damoom M, Aliyu AS (2013) Assessment of health hazard due to natural radioactivity in Keluang District, Johor, Malaysia. Isot Environ Health Stud 50:103–113

    Article  Google Scholar 

  37. Atwood DA (2013) Radionuclides in the environment. Wiley, Hoboken

    Google Scholar 

  38. Patra AC (2011) Long-term leaching of uranium from different waste matrices. J Environ Manag 92(3):919–925

    Article  CAS  Google Scholar 

  39. Talibudeen O (1964) Natural radioactivity in soils. Soils Fertil 27:347–359

    CAS  Google Scholar 

  40. Valkovic V (2000) Radioactivity in the environment: physicochemical aspects and applications. Elsevier, London

    Google Scholar 

  41. International Commission on Radiological Protection (1991) 1990 Recommendations of the international commission on radiological protection. ICRP Publication 60 annual of ICRP reference, Kuala Lumpur

    Google Scholar 

  42. Karahan G (2010) Risk assessment of baseline outdoor gamma dose rate levels study of natural radiation sources in Bursa, Turkey. Radiat Prot Dosim 142:324–331

    Article  CAS  Google Scholar 

  43. BEIR VII, The Biological Effects of Ionizing Radiation VII (2006) Health risks from exposure to low levels of ionizing radiation. The National Academy of Sciences, Washington

    Google Scholar 

  44. Beretka J, Matthew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48:87–95

    Article  CAS  Google Scholar 

  45. Veiga R, Sanches N, Anjos RM, Macario K, Bastos J, Iguatemy M, Aguiar JG, Santos AMA, Mosquera B, Carvalho C, Baptista Filho M, Umisedo NK (2006) Measurement of natural radioactivity in Brazilian beach sands. Radiat Meas 41:189–196

    Article  CAS  Google Scholar 

  46. Fernandez JF, Lozano JC, Gomez JMG (1992) Natural radionuclides in ground water in western Spain. Radiat Prot Dosim 45:227–279

    CAS  Google Scholar 

  47. Degerlier M, Karahan G (2010) Natural radioactivity in various surface waters in Adana. Turk Desalin 261(1):126–130

    Article  CAS  Google Scholar 

  48. Krieger H, Whittaker E (1980) Prescribed procedures for measurement of radioactivity in drinking water. US Environmental Protection Agency Manual EPA-600, Washington

    Google Scholar 

  49. Sajo-Bohus L, Gomez J, Capote T, Greaves E, Herrera O, Salazar V et al (1997) Gross alpha radioactivity of drinking water in Venezuela. J Environ Radioact 35:305–312

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Post-Doctoral Fellowship Scheme for the project: “Environmental Radiology of Peninsular Malaysia”, Research Management Center (RMC), University Technology Malaysia (UTM) and for the project: "Hybrid simulation techniques for site selection and assessment of radiological consequences of routine and accidental releases of radionuclides from pioneer nuclear power plants in Malaysia". Also, The authors would like to thank the Ministry of Higher Education Malaysia (MOHE) and University Technology Malaysia (UTM) for support and funding under UTM Research University Grant; QJ130000.2526.03H67.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muneer Aziz Saleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, M.A., Ramli, A.T., bin Hamzah, K. et al. Natural environmental radioactivity and the corresponding health risk in Johor Bahru District, Johor, Malaysia. J Radioanal Nucl Chem 303, 1753–1761 (2015). https://doi.org/10.1007/s10967-014-3631-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3631-y

Keywords

Navigation