Spatiotemporal modeling and simulation of chernobyl radioactive fallout in northern Turkey

Abstract

In this study, the Chernobyl radioactive fallouts are described through the spatio-temporal point cumulative semivariogram (STPCSV) method, which is used to identify spatial and temporal regionalized changes in 134Cs and 137Cs concentrations. The application of the methodology is presented for the Black Sea Region, which is the most affected area from the Chernobyl radioactive fallouts in Turkey. After detailed explanation of the methodology hourly simulation maps are prepared for 134Cs and 137Cs spreads over the area. Each one of these maps provides valuable information about the spatial variability of the concentrations concerned. The STPCSV helps to identify the exhibition of heterogenic structure of radioactive concentration in the study area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. 1.

    Church TM, Tramontano JM, Scudlark JR, Jickells TD, Tokos JJ, Knap JR, Knap AH (1984) The wet deposition of trace metals to the western Atlantic Ocean at the mid-Atlantic coast and on Bermuda. Atmos Environ 18:2657–2664

    CAS  Article  Google Scholar 

  2. 2.

    Salomons W (1986) Impact of atmospheric inputs on the hydrospheric trace metal cycle, in Toxic Metals in the Atmosphere. John Wiley, New York

    Google Scholar 

  3. 3.

    Hölgye Z, Schlesingerová E (2010) Further results in search for transuranium elements in effluents discharged to air from nuclear power plants. J Radioanal Nucl Chem 286:341–345

    Article  Google Scholar 

  4. 4.

    Hazama R, Matsushima A (2013) Measurement of fallout with rain in Hiroshima and several sites in Japan from the Fukushima reactor accident. J Radioanal Nucl Chem 297:469–475

    CAS  Article  Google Scholar 

  5. 5.

    Jickells TD (1995) Atmospheric inputs of metals and nutrients to the oceans: their magnitude and effects. Mar Chem 48:199–214

    CAS  Article  Google Scholar 

  6. 6.

    Lujaniene G, Plukis A, Kimtys E, Remeikis V, Jankünaite D, Ogorodnikov BI (2002) Study of 137Cs, 90Sr, 239,240Pu and 214Am behavior in the Chernobyl soil. J Radioanal Nucl Chem 251:59–68

    CAS  Article  Google Scholar 

  7. 7.

    TAEK, 2007. URL: http://www.taek.gov.tr/en/. Accessed 3 Sept 2013

  8. 8.

    Külahcı F, Şen Z, Kazanç S (2008) Cesium concentration spatial distribution modeling by point cumulative semivariogram. Water Air Soil Pollut 195:151–160

    Article  Google Scholar 

  9. 9.

    Mora SD, Sheikholeslami MR, Wyse E, Azemard S, Cassi R (2004) An assessment of metal contamination in coastal sediments of the Caspian Sea. Mar Pollut Bull 48:61–77

    Article  Google Scholar 

  10. 10.

    Landsberger S, Kapsimalis R, Dolloff J (2013) Measuring activity of 235, 238U, 232Th and 40K in geological materials using neutron activation analysis. J Radioanal Nucl Chem 296:323–327

    CAS  Article  Google Scholar 

  11. 11.

    Alabdullah J, Michel H, Barci V, Féraud G, Barci-Funel G (2013) Spatial and vertical distributions of natural and anthropogenic radionuclides and cesium fractionation in sediments of the Var river and its tributaries (southeast France). J Radioanal Nucl Chem 298:25–32

    CAS  Article  Google Scholar 

  12. 12.

    Lauritzen B, Mikkelsen T (1999) A probabilistic dispersion model applied to the long-range transport of radionuclides from the Chernobyl accident. Atmos Environ 33:3271–3279

    CAS  Article  Google Scholar 

  13. 13.

    LaBrecque JJ, Cordoves PR (2003) Spatial distribution of cesium-137 in surface soils on the Araya and Paria Peninsulas (Venezuela). J Radioanal Nucl Chem 258:227–231

    CAS  Article  Google Scholar 

  14. 14.

    Horowitz LW, Walters S, Mauzerall DL, Emmons LK, Rasch PJ, Granier C, Tie X, Lamarque JF, Schultz MG, Tyndall GS, Orlando JJ, Brasseur GP (2003) A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, version 2. J Geophys Res Atmos. doi:10.1029/2002JD002853

    Google Scholar 

  15. 15.

    Langmann B, Zaksek K, Hort M (2010) Atmospheric distribution and removal of volcanic ash after the eruption of Kasatochi volcano: a regional model study. J Geophys Res Atmos. doi:10.1029/2009JD013298

    Google Scholar 

  16. 16.

    Stohl A, Seibert P, Wotawa G, Arnold D, Burkhart JF, Eckhardt S, Tapia C, Vargas A, Yasunari TJ (2012) Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos Chem Phys 12:2313–2343

    CAS  Article  Google Scholar 

  17. 17.

    Duce RA, Unni CK, Ray BJ, Prospero JM, Merrill JT (1980) Long-range atmospheric transport of soil dust from Asia to the Tropical North Pacific: temporal variability. Science 209:1522–1524

    CAS  Article  Google Scholar 

  18. 18.

    Friese JI, Kephart RF, Lucas DD (2013) Comparison of radionuclide ratios in atmospheric nuclear explosions and nuclear releases from Chernobyl and Fukushima seen in gamma ray spectrometry. J Radioanal Nucl Chem 296:899–903

    CAS  Article  Google Scholar 

  19. 19.

    Külahcı F (2011) A risk analysis model for radioactive wastes. J Hazard Mater 191:349–355

    Article  Google Scholar 

  20. 20.

    Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle 1. design of a soil-derived dust emission scheme. J Geophys Res. doi:10.1029/95JD00690

    Google Scholar 

  21. 21.

    Sun JM, Zhang MY, Liu TS (2001) Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: relations to source area and climate. J Geophys Res Atmos 106:10325–10333

    Article  Google Scholar 

  22. 22.

    Gurney KR, Law RM, Denning AS et al (2002) Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415:626–630

    Article  Google Scholar 

  23. 23.

    Külahcı F, Şen Z (2009) Spatio-temporal modeling of 210Pb transportation in lake environments. J Hazard Mater 65:525–532

    Article  Google Scholar 

  24. 24.

    Igarashi Y, Fujiwara H, Jugder D (2011) Change of the Asian dust source region deduced from the composition of anthropogenic radionuclides in surface soil in Mongolia. Atmos Chem and Phys 11:7069–7080

    CAS  Article  Google Scholar 

  25. 25.

    Cheung K, Olson MR, Shelton B, Schauer JJ, Sioutas C (2012) Seasonal and spatial variations of individual organic compounds of coarse particulate matter in the Los Angeles Basin. Atmos Environ 59:1–10

    CAS  Article  Google Scholar 

  26. 26.

    Meire RO, Lee SC, Targino AC et al (2012) Air concentrations and transport of persistent organic pollutants (POPs) in mountains of southeast and southern Brazil. Atmos Pollut Res 4:417–425

    Article  Google Scholar 

  27. 27.

    Schoeppner M, Plastino W, Povinec PP, Wotawa G, Bella F, Budano A, Vincenzi MD, Ruggieri F (2012) Estimation of the time-dependent radioactive source-term from the Fukushima nuclear power plant accident using atmospheric transport modelling. J Environ Radioact 114:10–14

    Article  Google Scholar 

  28. 28.

    Lelieveld J, Kunkel D, Lawrence MG (2012) Global risk of radioactive fallout after major nuclear reactor accidents. Atmos Chem Phys 12:4245–4258

    CAS  Article  Google Scholar 

  29. 29.

    Külahcı F, Şen Z (2009) Risk assessment of distribution coefficient from 137Cs measurements. Environ Monit Assess 149:63–370

    Google Scholar 

  30. 30.

    Gri N, Stammose D, Guillou P, Genet M (2000) Mobility of 137Cs related to speciation studies in contaminated soils of the Chernobly area. J Radioanal Nucl Chem 246:403–409

    CAS  Article  Google Scholar 

  31. 31.

    Aközcan S, Yılmaz M, Külahcı F (2014) Dose rates and seasonal variations of 238U, 232Th, 226Ra, 40K and 137Cs radionuclides in soils along Thrace, Turkey. J Radioanal Nucl Chem 299:95–101

    Article  Google Scholar 

  32. 32.

    Külahcı F, Şen Z (2014) On the correction of spatial and statistical uncertainties in systematic measurements of 222Rn for earthquake prediction. Surv Geophys 35:449–478

    Article  Google Scholar 

  33. 33.

    Matheron G (1963) Principle of geostatistics. Econ Geol 58:1246–1266

    CAS  Article  Google Scholar 

  34. 34.

    Külahcı F, Şen Z (2007) Spatial dispersion of 90Sr by point cumulative semivariogram at Keban Dam Lake, Turkey. Appl Radiat Isot 65:1070–1077

    Article  Google Scholar 

  35. 35.

    Clark I (2001) Practical geostatistics 2000. Applied Science Publishers, London

    Google Scholar 

  36. 36.

    Külahcı F, Şen Z (2009) Potential utilization of the absolute point cumulative semivariogram technique for the evaluation of distribution coefficient. J Hazard Mater 168:1387–1396

    Article  Google Scholar 

  37. 37.

    Şen Z (1989) Cumulative semivariogram model of regionalized variables. Math Geol 21:891–903

    Article  Google Scholar 

  38. 38.

    Şen Z, Habib ZZ (1998) Point cumulative semivariogram of areal precipitation in mountainous regions. J Hydrol 205:81–91

    Article  Google Scholar 

  39. 39.

    Şahin AD, Şen Z (2004) A new spatial prediction model and its application to wind records. Theoret Appl Climatol 79:45–54

    Article  Google Scholar 

  40. 40.

    Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, New York

    Google Scholar 

  41. 41.

    Surfer User’s Guide Copyright Golden Software, Inc. 1999

  42. 42.

    Fujiwara H, Fukuyama T, Shirato Y, Ohkuro T, Taniyama I, Tong-Hui Z (2002) Deposition of atmospheric 137Cs in Japan associated with the Asian dust event of March 2002. Sci Total Environ 384:306–315

    Article  Google Scholar 

  43. 43.

    Bernard C, Mabit L, Laverdiére MR, Wicherek S (1998) Césium-137 et érosion des sols. Cah Agric 7:179–186

    Google Scholar 

  44. 44.

    Zhang X, Long Y, He X, Fu J, Zhang Y (2008) A simplified 137Cs transport model for estimating erosion rates in undisturbed soil. J Environ Radioact 99:1242–1246

    CAS  Article  Google Scholar 

  45. 45.

    UNSCEAR (2000) Sources and effects of ionizing radiation Vol 1

  46. 46.

    Cressie N (1991) Statistics for spatial data. Academic Press, New York

    Google Scholar 

Download references

Acknowledgments

This research is partially supported by the Fırat University under Project No. FÜBAP-1812. We would like to thank Turkish State Meteorological Service for the wind speed data. We would also like to thank Turkish Atomic Energy Authority for the radionuclide data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fatih Külahcı.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niksarlıoğlu, S., Külahcı, F. & Şen, Z. Spatiotemporal modeling and simulation of chernobyl radioactive fallout in northern Turkey. J Radioanal Nucl Chem 303, 171–186 (2015). https://doi.org/10.1007/s10967-014-3517-z

Download citation

Keywords

  • Radioactive fallout
  • Spatial analysis
  • Spatiotemporal analysis
  • Model