Selenium in bread and durum wheats grown under a soil-supplementation regime in actual field conditions, determined by cyclic and radiochemical neutron activation analysis

Abstract

This work focuses on the ability of bread and durum wheat to accumulate selenium (Se) via a soil-addition procedure at sowing time. Total Se in mature-grain samples was determined by neutron activation analysis (cyclic and radiochemical). Results show that Se-supplementation at the top rate (100 g Se ha−1) can increase Se contents up to 2, 16, 18 and 20 times for Jordão, Roxo, Marialva and Celta cultivars, respectively, when compared to their unsupplemented crops. These findings do not preclude the need for weighing up an eventual trade-off between agrochemical costs, field logistics and Se recovery for alternative Se-biofortification methods.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  Google Scholar 

  2. 2.

    Letavayová L, Vlčková V, Brozmanová J (2006) Selenium: from cancer prevention to DNA damage. Toxicology 227:1–14

    Article  Google Scholar 

  3. 3.

    Steinbrenner H, Sies H (2009) Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta 1790:1478–1485

    Article  CAS  Google Scholar 

  4. 4.

    Ferguson LR, Karunasinghe N, Zhu S, Wang AH (2012) Selenium and its’ role in the maintenance of genomic stability. Mutat Res-Fund Mol Muta 733:100–110

    Article  CAS  Google Scholar 

  5. 5.

    Weeks BS, Hanna, Cooperstein D (2012) Dietary selenium and selenoprotein function. Med Sci Monit 18:RA127–RA132

    Article  CAS  Google Scholar 

  6. 6.

    Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268

    Article  CAS  Google Scholar 

  7. 7.

    Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6:25–54

    Article  CAS  Google Scholar 

  8. 8.

    Stapleton SR (2000) Introduction: the selenium conundrum. Cell Mol Life Sci 57:1823–1824

    Article  CAS  Google Scholar 

  9. 9.

    Thomson CD (2004) Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 58:391–402

    Article  CAS  Google Scholar 

  10. 10.

    Viegas-Crespo AM, Pavão ML, Paulo O, Santos V, Santos MC, Nève J (2000) Trace element status (Se, Cu, Zn) and serum lipid profile in Portuguese subjects of San Miguel Island from Azores’ archipelago. J Trace Elem Med Biol 14:1–5

    Article  CAS  Google Scholar 

  11. 11.

    Pavão ML, Cordeiro C, Costa A, Raposo JA, Santos MC, Nève J, Viegas-Crespo AM (2003) Comparison of whole-blood glutathione peroxidase activity, levels of serum selenium, and lipid peroxidation in subjects from the fishing and rural communities of “Rabo de Peixe” village, San Miguel island, the Azores’ archipelago, Portugal. Biol Trace Elem Res 92:27–40

    Article  Google Scholar 

  12. 12.

    Lopes PA, Santos MC, Vicente L, Rodrigues MO, Pavão ML, Nève J, Viegas-Crespo AM (2004) Trace element status (Se, Cu, Zn) in healthy Portuguese subjects of Lisbon population. Biol Trace Elem Res 101:1–17

    Article  CAS  Google Scholar 

  13. 13.

    Van Cauwenbergh R, Robberecht H, Van Vlaslaer V, Deelstra H (2004) Comparison of the serum selenium content of healthy adults living in the Antwerp region (Belgium) with recent literature data. J Trace Elem Med Biol 18:99–112

    Article  Google Scholar 

  14. 14.

    Rayman MP (1997) Dietary selenium: time to act. Brit Med J 314:387–388

    Article  CAS  Google Scholar 

  15. 15.

    Combs GF Jr (2001) Selenium in global food systems. Brit J Nutr 85:517–547

    Article  CAS  Google Scholar 

  16. 16.

    Rayman MP (2002) The argument for increasing selenium intake. Proc Nutr Soc 61:203–215

    Article  CAS  Google Scholar 

  17. 17.

    Finley JW (2006) Bioavailability of selenium from foods. Nutr Rev 64:146–151

    Article  Google Scholar 

  18. 18.

    Hawkesford MJ, Zhao F-J (2007) Strategies for increasing the selenium content of wheat. J Cereal Sci 46:282–292

    Article  CAS  Google Scholar 

  19. 19.

    Navarro-Alarcón M, Cabrera-Vique C (2008) Selenium in food and the human body: a review. Sci Total Environ 400:115–141

    Article  Google Scholar 

  20. 20.

    Mulholland CA, Benford DJ (2007) What is known about the safety of multivitamin-multimineral supplements for the generally healthy population? Theoretical basis for harm. Am J Clin Nutr 85(suppl):318S–322S

    CAS  Google Scholar 

  21. 21.

    Lyons GH, Cakmak I (2012) In: Bruulsema TW, Heffer P, Welch RM, Cakmak I, Moran K (eds) Fertilizing crops to improve human health: a scientific review Vol 1: Food and nutrition security. International Plant Nutrition Institute, Norcross, GA; International Fertilizer Industry Association, Paris

  22. 22.

    Alexander AR, Whanger PD, Miller LT (1983) Bioavailability to rats of selenium in various tuna and wheat products. J Nutr 113:196–204

    CAS  Google Scholar 

  23. 23.

    van der Torre HW, van Dokkum W, Schaafsma G, Wedel M, Ockhuizen T (1991) Effect of various levels of selenium in wheat and meat on blood Se status indices and on Se balance in Dutch men. Brit J Nutr 65:69–80

    Article  Google Scholar 

  24. 24.

    Lyons GH, Genc Y, Stangoulis JCR, Palmer LT, Graham RD (2005) Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biol Trace Elem Res 103:155–168

    Article  CAS  Google Scholar 

  25. 25.

    Haug A, Graham RD, Christophersen OA, Lyons GH (2007) How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb Ecol Health Dis 19:209–228

    Article  CAS  Google Scholar 

  26. 26.

    Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620–3633

    Article  CAS  Google Scholar 

  27. 27.

    Combs GF Jr (2001) Impact of selenium and cancer-prevention findings on the nutrition-health paradigm. Nutr Cancer 40:6–11

    Article  CAS  Google Scholar 

  28. 28.

    Burk RF (2002) Selenium, an antioxidant nutrient. Nutr Clin Care 5:75–79

    Article  Google Scholar 

  29. 29.

    Arthur JR (2003) Selenium supplementation: does soil supplementation help and why? Proc Nutr Soc 62:393–397

    Article  CAS  Google Scholar 

  30. 30.

    Galinha C, Freitas MC, Pacheco AMG, Coutinho J, Maçãs B, Almeida AS (2013) Selenium supplementation of Portuguese wheat cultivars through foliar treatment in actual field conditions. J Radioanal Nucl Chem 297:227–231

    Article  CAS  Google Scholar 

  31. 31.

    Kučera J, Soukal L (1993) Determination of As, Cd, Cu, Hg, Mo, Sb, and Se in biological reference materials by radiochemical neutron activation analysis. J Radioanal Nucl Chem 168:185–199

    Article  Google Scholar 

  32. 32.

    Galinha C, Freitas MC, Pacheco AMG, Kameník J, Kučera J, Anawar HM, Coutinho J, Maçãs B, Almeida AS (2012) Selenium determination in cereal plants and cultivation soils by radiochemical neutron activation analysis. J Radioanal Nucl Chem 294:349–354

    Article  CAS  Google Scholar 

  33. 33.

    Gupta UC, Gupta SC (2002) Quality of animal and human life as affected by selenium management of soils and crops. Commun Soil Sci Plant Anal 33:2537–2555

    Article  CAS  Google Scholar 

  34. 34.

    Barclay MNI, MacPherson A (1992) Selenium content of wheat for bread making in Scotland and the relationship between glutathione peroxidase (EC 1.11.l.9) levels in whole blood and bread consumption. Brit J Nutr 68:261–270

    Article  CAS  Google Scholar 

  35. 35.

    Lyons GH, Stangoulis JCR, Graham RD (2005) Tolerance of wheat (Triticum aestivum L.) to high soil and solution selenium levels. Plant Soil 270:179–188

    Article  CAS  Google Scholar 

  36. 36.

    Afton SE, Catron B, Caruso JA (2009) Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant. J Exp Botany 60:1289–1297

    Article  CAS  Google Scholar 

  37. 37.

    Lyons G, Ortiz-Monasterio I, Stangoulis J, Graham R (2005) Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding? Plant Soil 269:369–380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Portuguese Foundation for the Science and the Technology (Fundação para a Ciência e a Tecnologia – FCT; Portugal) through research contract PTDC/QUI/65618/2006 is gratefully acknowledged. C. Galinha is also indebted to FCT for her PhD grant (SFRH/BD/84575/2012). A.S. Almeida thanks FCT Ciência 2008 programme. The radiochemical work at the Nuclear Physics Institute has been supported by the European Commission under the 7th Framework Programme through the ‘Research Infrastructures’ action of the ‘Capacities’ Programme, NMI3-II Grant number 283883.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adriano M. G. Pacheco.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Galinha, C., Pacheco, A.M.G., Freitas, M.C. et al. Selenium in bread and durum wheats grown under a soil-supplementation regime in actual field conditions, determined by cyclic and radiochemical neutron activation analysis. J Radioanal Nucl Chem 304, 139–143 (2015). https://doi.org/10.1007/s10967-014-3455-9

Download citation

Keywords

  • Agronomy
  • Biofortification
  • Selenium
  • Supplementation
  • Wheat
  • NAA