Skip to main content
Log in

Extraction kinetics of Uranium(VI) and Thorium(IV) with Tri-iso-amyl phosphate from nitric acid using a Lewis Cell

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The extraction kinetics of uranium(VI) and thorium(IV) with Tri-iso-amyl phosphate (TiAP) from nitric acid medium has been investigated using a Lewis Cell. Especially, dependences of the extraction rate on stirring speed, temperature, interfacial area were firstly measured to elucidate the extraction kinetics regimes. The experimental results demonstrated that extraction kinetic of U(VI) is governed by chemical reactions at interface with an activation energy, Ea, of 43.41 kJ/mol, while the rate of Th(IV) extraction is proved to be intermediate controlled, of which the Ea is 23.20 kJ/mol. Reaction orders with respect to the influencing parameters of the extraction rate are determined, and the rate equations of U(VI) and Th(IV) at 293 K have been proposed as

$$ {\text{r}} = - {\text{dcUO}}_{ 2} \left( {{\text{NO}}_{ 3} } \right)_{ 2} /{\text{dt}} = 1. 80 \times 10^{ - 3} \left[ {{\text{UO}}_{ 2} \left( {{\text{NO}}_{ 3} } \right)_{ 2} } \right]^{ 1.0 1} \left[ {\text{TiAP}} \right]^{0. 5 5} , $$
$$ {\text{r}} = - {\text{dcTh }}\left( {{\text{NO}}_{ 3} } \right)_{ 4} /{\text{dt}} = 1. 8 8\times 10^{ - 3} \left[ {{\text{Th }}\left( {{\text{NO}}_{ 3} } \right)_{ 4} } \right]^{ 1.0 4} \left[ {\text{TiAP}} \right]^{ 1. 7 7} \left[ {{\text{HNO}}_{ 3} } \right]^{0. 3 8} , $$

respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Biswas S, Rupawate V, Hareendran K, Roy S (2013) Counter-current extraction and separation of U(VI) from a mixture of U(VI)–Th(IV)–Y(III) using tris-2-ethyl hexyl phosphate (TEHP). J Radioanal Nucl Chem 295(3):2243–2248

    Article  CAS  Google Scholar 

  2. Trellue HR, Bathke CG, Sadasivan P (2011) Neutronics and material attractiveness for PWR thorium systems using monte carlo techniques. Prog Nucl Energy 53(6):698–707

    Article  CAS  Google Scholar 

  3. Kaygun AK, Akyil S (2007) Study of the behaviour of thorium adsorption on PAN/zeolite composite adsorbent. J Hazard Mater 147(1):357–362

    Article  CAS  Google Scholar 

  4. Tyagi J, Kumar M, Lele H, Munshi P (2013) Thermal hydraulic analysis of the AHWR—The Indian thorium fuelled innovative nuclear reactor. Nucl Eng Des 262(2009):21–28

    Article  CAS  Google Scholar 

  5. Anantharaman K, Shivakumar V, Saha D (2008) Utilisation of thorium in reactors. J Nucl Mater 383(1):119–121

    Article  CAS  Google Scholar 

  6. Liu J, Wang Y, Li D (2008) Extraction kinetics of thorium(IV) with primary amine N1923 in sulfate media using a constant interfacial cell with laminar flow. Sep Sci Technol 43(2):431–445

    Article  Google Scholar 

  7. Kuz’minov B, Manokhin V (1998) Status of Nuclear Data for the Thorium Fuel Cycle. Report International Nuclear Data Committee (Collaborative Computational Project) -416, 1998. 1

  8. Raju SK, Subramanian M (2007) Sequential separation of lanthanides, thorium and uranium using novel solid phase extraction method from high acidic nuclear wastes. J Hazard Mater 145(1):315–322

    Article  CAS  Google Scholar 

  9. He Q, Chang X, Wu Q, Huang X, Hu Z, Zhai Y (2007) Synthesis and applications of surface-grafted Th(IV)-imprinted polymers for selective solid-phase extraction of thorium(IV). Anal Chim Acta 605(2):192–197

    Article  CAS  Google Scholar 

  10. Bayyari MA, Nazal MK, Khalili FI (2010) The effect of ionic strength on the extraction of thorium(IV) from perchlorate solution by didodecylphosphoric acid (HDDPA). Arab J Chem 3(2):115–119

    Article  CAS  Google Scholar 

  11. Pathak P, Prabhu D, Kanekar A, Ruikar P, Bhattacharyya A, Mohapatra P, Manchanda V (2004) Distribution behavior of U(VI), Th(IV), and fission products with di (2-ethylhexyl) isobutyramide under process conditions. Ind Eng Chem Res 43(15):4369–4375

    Article  CAS  Google Scholar 

  12. Petković DM (1988) Thermodynamics of extraction equilibria. Part 7. Solvent extraction of thorium nitrate with tri-n-butyl phosphate. J Chem Soc, Dalton Trans 21(7):1813–1816

    Article  Google Scholar 

  13. Sahoo TK, Chandran K, Muralidaran P, Ganesan V, Srinivasan T (2012) Calorimetric studies on thermal decomposition of tri isoamyl phosphate–nitric acid systems. Thermochim Acta 2012(534):9–16

    Article  Google Scholar 

  14. Sahoo TK, Srinivasan TG (2009) Effect of temperature on the extraction of uranium by TiAP/n-dodecane. Desalin Water Treat 12(1–3):40–44

    Article  CAS  Google Scholar 

  15. Suresh A, Srinivasan T, Rao PV (1994) Extraction of U(VI), Pu(IV) and Th(IV) by some trialkyl phosphates. Solv Extr Ion Exchange 12(4):727–744

    Article  CAS  Google Scholar 

  16. Suresh A, Srinivasan T, Rao PV (2009) Parameters Influencing Third-Phase Formation in the Extraction of Th(NO3)4 by some Trialkyl Phosphates. Solv Extr Ion Exchange 27(2):132–158

    Article  CAS  Google Scholar 

  17. Das B, Kumar S, Mondal P, Kamachi Mudali U, Natarajan R (2012) Synthesis and characterization of red-oil from tri iso-amyl phosphate/n-dodecane/nitric acid mixtures at elevated temperature. J Radioanal Nucl Chem 292(3):1161–1171

    Article  CAS  Google Scholar 

  18. Siddall III T (1960) The effects of altering alkyl substituents in trialkyl phosphates on the extraction of actinides. J Inorg Nucl Chem 13(1):151–155

    Article  Google Scholar 

  19. Siddall T (1959) Trialkyl phosphates and dialkyl alkylphosphonates in uranium and thorium extraction. Ind Eng Chem 51(1):41–44

    Article  CAS  Google Scholar 

  20. Horner D, Mallen J, Coggins J Jr, Thiel S, Scott T, Pih N, Yates R (1980) Interphase transfer kinetics of thorium between nitric acid and tributyl phosphate solutions using the single drop and the lewis cell techniques. J Radioanal Nucl Chem 253(2):287–291

    Google Scholar 

  21. Koladkar D, Dhadke P (2002) Extraction and separation of Th(IV) and U(VI) from nitric acid media using PIA-8 and HDEHP. J Radioanal Nucl Chem 214(1):297–302

    Article  Google Scholar 

  22. Wang Y-S, Sun G-X, Xie D-F, Bao B-R, Cao W-G (1996) Extraction of uranium(VI) and thorium(IV) ions from nitric acid solutions by N,N,N′,N′-tetrabutyladipicamide. J Radioanal Nucl Chem 219(1):67–76

    Article  Google Scholar 

  23. Shukla J, Gautam M, Kedari C, Hasan S, Rupainwar D (1997) Extraction of uranium(VI), plutonium(IV) and some fission products by tri-iso-amyl phosphate. Ind Eng Chem Fundam 19(3):61–67

    Google Scholar 

  24. Sahoo TK, Srinivasan T, Vasudeva Rao P (2011) Note: effect of Temperature in the Extraction of Uranium and Plutonium by Triisoamyl Phosphate. Solv Extr Ion Exchange 29(2):260–269

    Article  CAS  Google Scholar 

  25. Kalina DG, Mason GW, Philip Horwitz E (1981) The thermodynamics of extraction of U(VI) and Th(IV) from nitric acid by neutral phosphorus-based organic compounds. J Inorg Nucl Chem 43(1):159–163

    Article  CAS  Google Scholar 

  26. Rao PV, Srinivasan T, Suresh A (2010) Third phase formation in the extraction of thorium nitrate by trialkyl phosphates. International of Physics Conference Series: Materials Science and Engineering, International of Physics Publishing: 012056

  27. Hasan S, Shukla J (2003) Tri-iso-amyl phosphate (TAP): an alternative extractant to tri-butyl phosphate (TBP) for reactor fuel reprocessing. J Radioanal Nucl Chem 258(3):563–573

    Article  CAS  Google Scholar 

  28. Kong F, J-l Liao, S-d Ding, Y-y Yang, Huang H, J-j Yang, Tang J, Liu N (2013) Extraction and thermodynamic behavior of U(VI) and Th(IV) from nitric acid solution with tri-isoamyl phosphate. J radioanal nucl chem 298(1):651–656

    Article  CAS  Google Scholar 

  29. Boualia A, Mellah A, Silem A (1990) The effect of raw and sulfonated kerosene-type diluent on the solvent extraction of uranium and co-extractable impurities from solutions. Part 1. Uranyl nitrate solution. Hydrometallurgy 24(1):1–9

    Article  CAS  Google Scholar 

  30. Suresh A, Patre DK, Srinivasan T, Rao P (2002) A new procedure for the spectrophotometric determination of uranium(VI) in the presence of a large excess of thorium(IV). Spectrochim Acta Part A Mol Biomol Spectrosc 58(2):341–347

    Article  CAS  Google Scholar 

  31. Khan MH, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63(7):1165–1169

    Article  CAS  Google Scholar 

  32. El-Hefny NE (2007) Kinetics and mechanism of extraction and stripping of neodymium using a Lewis cell. Chem Eng Process 46(7):623–629

    Article  CAS  Google Scholar 

  33. El-Hefny N (2010) Kinetics and mechanism of extraction of Cu(II) by CYANEX 302 from nitrate medium and oxidative stripping of Cu(I) using Lewis cell technique. Chem Eng Process 49(1):84–90

    Article  CAS  Google Scholar 

  34. Biswas R, Mondal M (2003) Kinetics of Mn(II) extraction by D2EHPA. Hydrometallurgy 69(1):145–156

    Article  CAS  Google Scholar 

  35. Lee I, Wang Y-J, Chern J-M (2005) Extraction kinetics of heavy metal-containing sludge. J Hazard Mater 123(1):112–119

    Article  CAS  Google Scholar 

  36. Biswas R, Habib M, Mondal M (2005) Kinetics and mechanism of stripping of Mn(II)–D2EHPA complex by sulphuric acid solution. Hydrometallurgy 80(3):186–195

    Article  CAS  Google Scholar 

  37. Javanshir S, Abdollahy M, Abolghasemi H, Darban AK (2011) Kinetics of Au(III) extraction by DBC from hydrochloric solution using Lewis cell. Int J Miner Process 98(1):42–47

    Article  CAS  Google Scholar 

  38. Biswas R, Habib M, Karmakar A (2007) Kinetics of Solvent Extraction of Iron(III) from Sulfate Medium by Purified Cyanex 272 using a Lewis Cell. Solv Extr Ion Exchange 25(1):79–98

    Article  CAS  Google Scholar 

  39. Saleh MI, Bari MF, Jab MS, Saad B (2002) Kinetics of lanthanum(III) extraction from nitrate-acetato medium by Cyanex 272 in toluene using the single drop technique. Hydrometallurgy 67(1):45–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by China National Natural Science Foundation (Grant No. 21071102, 91126013); Joint Funds of China National Natural Science Foundation and China Academy of Engineering Physics (NSAF, Grant No. U1330125) and the National Fund of China for Fostering Talents in Basic Science (J1210004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xq., Kong, F., Liao, Jl. et al. Extraction kinetics of Uranium(VI) and Thorium(IV) with Tri-iso-amyl phosphate from nitric acid using a Lewis Cell. J Radioanal Nucl Chem 302, 1069–1076 (2014). https://doi.org/10.1007/s10967-014-3447-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3447-9

Keywords

Navigation