Skip to main content
Log in

Validating mass spectrometry measurements of nuclear materials via a non-contact volume analysis method of ion sputter craters

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A combination of secondary ion mass spectrometry, optical profilometry and a statistically-driven algorithm was used to develop a non-contact volume analysis method to validate the useful yields of nuclear materials. The volume analysis methodology was applied to ion sputter craters created in silicon and uranium substrates sputtered by 18.5 keV O and 6.0 keV Ar+ ions. Sputter yield measurements were determined from the volume calculations and were shown to be comparable to Monte Carlo calculations and previously reported experimental observations. Additionally, the volume calculations were used to determine the useful yields of Si+, SiO+ and SiO2 + ions from the silicon substrate and U+, UO+ and UO2 + ions from the uranium substrate under 18.5 keV O and 6.0 keV Ar+ ion bombardment. This work represents the first steps toward validating the interlaboratory and cross-platform performance of mass spectrometry for the analysis of nuclear materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Esaka F, Magara M, Lee CG, Sakurai S, Usuda S, Shinohara N (2009) Talanta 78:290

    Article  CAS  Google Scholar 

  2. Gunther-Leopold I, Waldis JK, Wernli B, Kopajtic Z (2005) Int J Mass Spectrom 242:197

    Article  Google Scholar 

  3. Kraiem M, Richter S, Kuhn H, Stefaniak EA, Kerckhove G, Truyens J, Aregbe Y (2011) Anal Chem 83:3011

    Article  CAS  Google Scholar 

  4. Pitois A, de las Heras LA, Betti M (2008) Int J Mass Spectrom 270:118

    Article  CAS  Google Scholar 

  5. Pointurier F, Pottin AC, Hubert A (2011) Anal Chem 83:7841

    Article  CAS  Google Scholar 

  6. Zhang XZ, Esaka F, Esaka KT, Magara M, Sakurai S, Usuda S, Watanabe K (2007) Spectrochim Acta B 62:1130

    Article  Google Scholar 

  7. Child DP, Hotchkis MAC, Whittle K, Zorko B (2010) Nucl Instrum Methods B 268:820

    Article  CAS  Google Scholar 

  8. Gotcu-Freis P, Colle JY, Hiernaut JP, Benes O, Gueneau C, Konings RJM (2014) J Chem Thermodyn 71:212

    Article  CAS  Google Scholar 

  9. Johnson SG, Fearey BL (1993) Spectrochim Acta B 48:1065

    Article  Google Scholar 

  10. Liezers M, Pratt SH, Hart GL, Duckworth DC (2013) J Radioanal Nucl Chem 296:1037

    CAS  Google Scholar 

  11. Riciputi LR, Ingeneri KB, Hedberg PMI (2002) Proc IAEA 347–353:392

  12. Gillen G, Szakal C, Brewer TM (2011) Surf Interface Anal 43:376

    Article  CAS  Google Scholar 

  13. King BV, Pellin MJ, Moore JF, Veryovkin IV, Savina MR, Tripa CE (2003) Appl Surf Sci 203:244

    Article  Google Scholar 

  14. Tamborini G, Donohue DL, Rudenauer FG, Betti M (2004) J Anal Atom Spectrom 19:203

    Article  CAS  Google Scholar 

  15. Xu JY, Szakal CW, Martin SE, Peterson BR, Wucher A, Winograd N (2004) J Am Chem Soc 126:3902

    Article  CAS  Google Scholar 

  16. Wittmaack K (1996) Surf Interface Anal 24:389

    Article  CAS  Google Scholar 

  17. Heinrich R, Wucher A (2003) Nucl Instrum Methods B 207:136

    Article  CAS  Google Scholar 

  18. Nagatomi T, Bungo T, Takai Y (2009) Surf Interface Anal 41:581

    Article  CAS  Google Scholar 

  19. Baryshev SV, Zinovev AV, Tripa CE, Erck RA, Veryovkin IV (2012) Appl Surf Sci 258:6963

    Article  CAS  Google Scholar 

  20. Winograd N (2013) Surf Interface Anal 45:3

    Article  CAS  Google Scholar 

  21. Houssiau L, Mine N (2010) Surf Interface Anal 42:1402

    Article  CAS  Google Scholar 

  22. Mahieu S, Depla D (2007) Appl Phys Lett 90:121117

    Article  Google Scholar 

  23. Vandervorst W, Janssens T, Huyghebaert C, Berghmans B (2008) Appl Surf Sci 255:1206

    Article  CAS  Google Scholar 

  24. Kuruc J, Harvan D, Galanda D, Matel L, Jerigova M, Velic D (2011) J Radioanal Nucl Chem 289:611

    Article  CAS  Google Scholar 

  25. Kuruc J, Strisovska J, Galanda D, Dulanska S, Matel L, Jerigova M, Velic D (2012) J Radioanal Nucl Chem 292:973

    Article  CAS  Google Scholar 

  26. Bersani M, Giubertoni D, Iacob E, Barozzi M, Pederzoli S, Vanzetti L, Anderle M (2006) Appl Surf Sci 252:7315

    Article  CAS  Google Scholar 

  27. Priggemeyer S, Heiland W (1993) Nucl Instrum Methods B 78:198

    Article  Google Scholar 

  28. Zalar A, Kovac J, Pracek B, Panjan P, Ceh M (2008) Appl Surf Sci 254:6611

    Article  CAS  Google Scholar 

  29. Meuris M, Debisschop P, Leclair JF, Vandervorst W (1989) Surf Interface Anal 14:739

    Article  CAS  Google Scholar 

  30. Migeon HN, Schuhmacher M, Legoux JJ, Rasser B (1989) Fresenius Z Anal Chem 333:333

    Article  CAS  Google Scholar 

  31. Smith NS, Tesch PP, Martin NP, Boswell RW (2009) Microsc Microanal 15:312

    Article  Google Scholar 

  32. Houssiau L, Mine N (2011) Surf Interface Anal 43:146

    Article  CAS  Google Scholar 

  33. Muramoto S, Brison J, Castner DG (2012) Anal Chem 84:365

    Article  CAS  Google Scholar 

  34. Yang L, Seah MP, Gilmore IS (2012) J Phys Chem C 116:23735

    Article  CAS  Google Scholar 

  35. Wang KM, Shi BR, Cue N, Shen DY, Chen F, Wang XL, Lu F (2004) Nucl Instrum Methods B 225:503

    Article  CAS  Google Scholar 

  36. Mayerhofer K, Foisner H, Piplits K, Hobler G, Palmetshofer L, Hutter H (2005) Appl Surf Sci 252:271

    Article  CAS  Google Scholar 

  37. Jin K, Zhang Y, Xue H, Zhu Z, Weber WJ (2013) Nucl Instrum Methods B 307:65

    Article  CAS  Google Scholar 

  38. Jin K, Zhang Y, Zhu Z, Grove DA, Xue H, Xue J, Weber WJ (2014) J Appl Phys 115:044903

    Article  Google Scholar 

  39. Cheng J, Wucher A, Winograd N (2006) J Phys Chem B 110:8329

    Article  CAS  Google Scholar 

  40. Mao D, Wucher A, Brenes DA, Lu CY, Winograd N (2012) Anal Chem 84:3981

    Article  CAS  Google Scholar 

  41. Shard AG, Havelund R, Seah MP, Spencer SJ, Gilmore IS, Winograd N, Mao D, Miyayama T, Niehuis E, Rading D, Moellers R (2012) Anal Chem 84:7865

    Article  CAS  Google Scholar 

  42. Sobers RC, Franzreb K, Williams P (2004) Appl Surf Sci 231:729

    Article  Google Scholar 

  43. Franzreb K, Lorincik J, Williams P (2004) Surf Sci 573:291

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research described in this paper was conducted under the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Willingham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willingham, D., Naes, B.E. & Fahey, A.J. Validating mass spectrometry measurements of nuclear materials via a non-contact volume analysis method of ion sputter craters. J Radioanal Nucl Chem 303, 655–662 (2015). https://doi.org/10.1007/s10967-014-3313-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3313-9

Keywords

Navigation