Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 1, pp 115–121 | Cite as

Prompt gamma-ray neutron activation analysis of boron using Deuterium–Deuterium (D–D) neutron generator

  • K. Bergaoui
  • N. Reguigui
  • C. K. Gary
  • C. Brown
  • J. T. Cremer
  • J. H. Vainionpaa
  • M. A. Piestrup


Prompt gamma-ray neutron activation analysis (PGNAA) is a nuclear analytical technique for the determination of trace and other elements in solid, liquid or gaseous samples. The method consists in observing gamma rays emitted by a sample during neutron irradiation. The PGNAA system was built using a moderated and shielded deuterium–deuterium (D–D) neutron generator. This facility has been developed to determine the chemical composition of materials. The neutron generator is composed of three major components: An RF-Induction Ion Source, the Secondary Electron Shroud, and the Diode Accelerator Structure and Target. The generator produces monoenergetic neutrons (2.5 MeV) with a yield of 1010 n/s using 25–50 mA of beam current and 125 kV of acceleration voltage. Prompt γ-ray neutron activation analysis of 10B concentrations in Si and SiO2 matrices was carried out using a germanium detector (HPGe) and the results obtained are compared with a PGNAA system using a NaI detector. Neutron flux and energy distribution from D–D neutron generator at the sample position was calculated using Monte Carlo simulation. The interaction properties of neutrons in a Germanium detector have been studied.


PGNAA D–D neutron generator HPGe detector NaI detector Boron MCNP6 



This research was supported by (IAEA TUN2003 project) “Installation of neutron activation analysis laboratory based on a neutron generator”.


  1. 1.
    Ellis KJ (1993) In-vivo activation analysis: present and future prospects. J Radioanal Nucl Chem 169:291–300CrossRefGoogle Scholar
  2. 2.
    Spyrou NM (1999) Neutron activation analysis challenges: problems and applications in biomedical and other areas. J Radioanal Nucl Chem 239:59–70CrossRefGoogle Scholar
  3. 3.
    Kudějová P (2005) On the construction of a new instrument for cold-neutron prompt gamma-ray activation analysis at the FRM-II. J Radioanal Nucl Chem 265:221–227CrossRefGoogle Scholar
  4. 4.
    Park YJ, Song BC, Chowdhury MI, Jee KY (2004) A neutron induced prompt gamma-ray spectroscopy system using a 252Cf neutron source for quantitative analysis of aqueous samples. J Radioanal Nucl Chem 260:585–594CrossRefGoogle Scholar
  5. 5.
    Turhan Ş, Yücel H, Demirbaş A (2004) Prompt gamma neutron activation analysis of boron with a 241Am-Be neutron source. J Radioanal Nucl Chem 262:661–664CrossRefGoogle Scholar
  6. 6.
    Shypailo RJ, Ellis KJ (2008) Prompt-gamma neutron activation analysis system design: effects of D-T versus D-D neutron generator source selection. J Radioanal Nucl Chem 276:71–77CrossRefGoogle Scholar
  7. 7.
    Oliveira C, Salgado J, Carvalho FG (1997) Optimization of PGNAA instrument design for cement raw materials using the MCNP code. J Radioanal Nucl Chem 216:191–198CrossRefGoogle Scholar
  8. 8.
    Jiggins AH, Habbani FI (1976) Prompt gamma-ray analysis using 329 MeV neutron inelastic scattering. Int Appl Radiat Isot 27:689–693CrossRefGoogle Scholar
  9. 9.
    Acharya R (2009) Prompt gamma-ray neutron activation analysis methodology for determination of boron from trace to major contents. J Radioanal Nucl Chem 281:291–294CrossRefGoogle Scholar
  10. 10.
    Baechler S, Kudejovac P, Joliec J, Schenkera JL, Strittd N (2002) Prompt gamma-ray activation analysis for the determination of boron in aqueous solutions. Nucl Instrum Methods A 488:410–418CrossRefGoogle Scholar
  11. 11.
    Hamid A (2012) K0-prompt gamma ray activation analysis for estimation of boron and cadmium in aqueous solutions. J Radioanal Nucl Chem 292:229–236CrossRefGoogle Scholar
  12. 12.
    Grazman BL, Schweikert EA (2005) A brief review of the determination of cadmium by prompt gamma-ray neutron activation analysis. J Radioanal Nucl Chem 152:497–506CrossRefGoogle Scholar
  13. 13.
    Grinyer J, Byun SH, Chettle DR (2005) In vivo prompt gamma neutron activation analysis of cadmium in the kidney and liver. Appl Radiat Isot 63:475–479CrossRefGoogle Scholar
  14. 14.
    Kobayashi T, Kanda K (1983) Microanalysis system of ppm-order 10B concentrations in tissue for neutron capture therapy by prompt gamma-ray spectrometry. Nucl Instrum Methods Phys Res 204:525–531CrossRefGoogle Scholar
  15. 15.
    Anderson DL, Cunningham WC, Mackey EA (1990) Determination of boron in food and biological reference materials by neutron capture prompt-γ activation. Fresenius J Anal Chem 338:554–558CrossRefGoogle Scholar
  16. 16.
    Probst TU (1999) Methods for boron analysis in boron neutron capture therapy (BNCT). Fresenius J Anal Chem 364(5):391–403CrossRefGoogle Scholar
  17. 17.
    Firestone RB, Shirley VS (1996) Table of isotopes, 8th edn. Wiley, New YorkGoogle Scholar
  18. 18.
    Oliveira C, Salgado J, Goncalves IF, Carvalho FG (1993) Prompt gamma-ray neutron activation analysis of cement raw material. J Nucl Geophys 7:431–443Google Scholar
  19. 19.
    Isenhour TL, Morrison GH (1966) Determination of boron by thermal neutron activation analysis using a modulation technique. Anal Chem 38:167CrossRefGoogle Scholar
  20. 20.
    Bergaoui K, Reguigui N, Gary CK, Cremer JT, Vainionpaa JH, Piestrup MA (2014) Design, testing and optimization of a neutron radiography system based on a deuterium-deuterium (D-D) neutron generator. J Radioanal Nucl Chem 299:41–51CrossRefGoogle Scholar
  21. 21.
    Marshall JH, Zumberge JF (1989) On-line measurements of bulk coal using prompt gamma neutron activation analysis. Nuclear Geophys 3:445Google Scholar
  22. 22.
    Ellis DV (1987) Well logging for earth scientists. Elsevier, New YorkGoogle Scholar
  23. 23.
    Adelphi Technology Inc.
  24. 24.
    Reijonen J (2007) Compact neutron generators for medical, Homeland Security and planetary exploration. Nucl Instr Methods B: 261–272Google Scholar
  25. 25.
    Popov V, Degtiarenko P, Musatov I (2010) New detector for use in fast neutron radiography. In: 12th International workshop on radiation imaging defectors, Robinson College, Cambridge UK. IOP Published for SISSAGoogle Scholar
  26. 26.
    Goorley T, James M, Booth T, Brown F, Bull J, Cox L, Durkee J, Elson J, Fensin M, Forster RA, Hendricks J, Hughes HG, Johns R, Kiedrowski B, Martz R, Mashnik S, McKinney G, Pelowitz D, Prael R, Sweezy J, Waters L, Wilcox T, Zukaitis T (2013) Initial MCNP6 release overview-MCNP6 version 1.0, LAUR-13-22934Google Scholar
  27. 27.
    Carron NJ (2007) An introduction to the passage of energetic particles through matter. Taylor & Francis, p 308Google Scholar
  28. 28.
    Anno JN (1984) Notes on radiation effects on materials. Hemisphere Publishing, Washington. ISBN 3540135596Google Scholar
  29. 29.
    Koenenl M, Bruckner J, Fabian U, Kruse H (1996) Analysis of radiation damaged HPGe detectors with a new algorithm. IEEE Trans Nucl Sci 43(3):1570–1575CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • K. Bergaoui
    • 1
  • N. Reguigui
    • 1
  • C. K. Gary
    • 2
  • C. Brown
    • 2
  • J. T. Cremer
    • 2
  • J. H. Vainionpaa
    • 2
  • M. A. Piestrup
    • 2
  1. 1.Unité de recherche “Maîtrise et Développement des Techniques Nucléaires à Caractère Pacifique”National Center of Nuclear Sciences and TechnologiesSidi ThabetTunisia
  2. 2.Adelphi Technology Inc.Redwood CityUSA

Personalised recommendations