Skip to main content
Log in

Uses of tensor-induced spin–orbit splitting to locate spherical doubly-magic SHE

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Using optimized iso-scalar and iso-vector tensor coupling constants in Skyrme Hartree–Fock calculation which reproduces the splitting of spin–orbit partners 1f7/2–1f5/2 in 40,48Ca and 56Ni, the evolution of shells in the nuclear chart have been studied through developments in spin–orbit splitting. Signatures for all the magic numbers have been generated without any exception. The procedure when extended to superheavy region indicates the element with Z = 114 and N = 184 to be a doubly-magic spherical nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dobaczewski J, Nazarewicz W (1998) Phil Trans R Soc Lond A 356:2007–2031

    Article  CAS  Google Scholar 

  2. Casten RF, Sherrill BM (2000) Prog Part Nucl Phys 45:S171–S233

    Article  CAS  Google Scholar 

  3. Geesaman DF, Saito K, Thomas AW (2006) Ann Rev Nucl Part Sci 56:53–92

    Article  CAS  Google Scholar 

  4. Myers WD, Swiatecki WJ (1966) Nucl Phys 81:1–60

    Article  CAS  Google Scholar 

  5. Nilsson SG, Tsang CF, Sobiczewski A, Szymanski Z, Wyceck S, Gustafson C, Lamm I, Moller P, Nilsson B (1969) Nucl Phys A131:1–66

    Article  Google Scholar 

  6. Mosel U, Greiner W (1969) Z Phys 222:261–282

    Article  CAS  Google Scholar 

  7. Fizet EO, Nix JR (1972) Nucl Phys A193:647–671

    Article  Google Scholar 

  8. Brack M, Damgaard J, Jensen AS, Pauli HC, Strutinsky VM, Wong CY (1972) Rev Mod Phys 44:320–405

    Article  CAS  Google Scholar 

  9. Janssens RVF (2005) Nature 435:89–92

    Article  Google Scholar 

  10. Beiner M, Lombard RJ, Mas D (1975) Nucl Phys A 249:1–28

    Article  Google Scholar 

  11. Brown BA (2001) Prog Part Nucl Phys 47:517–599

    Article  CAS  Google Scholar 

  12. Reinhard P–G, Dean DJ, Nazarewicz W, Dobaczewski J, Maruhn JA, Strayer MR (1999) Phys Rev C 60:014316

    Article  Google Scholar 

  13. Vautherin D, Veneroni M, Brink DM (1970) Phys Lett B33:381–384

    Article  Google Scholar 

  14. Beiner M, Flocard H, Veneroni M, Quentin P (1974) Phys Scr 10A:84–89

    Article  CAS  Google Scholar 

  15. Tondeur F (1980) Z Phys A297:61–71

    Article  Google Scholar 

  16. Gambhir YK, Ring P, Thimet A (1990) Ann Phys (NY) 198:132–179

    Article  CAS  Google Scholar 

  17. Lalazissis GA, Sharma MM, Ring P, Gambhir YK (1996) Nucl Phys A608:202–226

    Article  CAS  Google Scholar 

  18. Cwiok S, Dobaczewski JHeenen PH, Magierski P, Nazarewicz W (1996) Nucl Phys A611:211–246

    Article  CAS  Google Scholar 

  19. Rutz K, Bender M, Burvenich T, Schilling T, Reinhard P-G, Maruhn JA, Greiner W (1997) Phys Rev C 56:238–243

    Article  CAS  Google Scholar 

  20. Bender M, Rutz K, Reinhard P–G, Maruhn JA, Greiner W (1998) Phys Rev C 58:2126–2132

    Article  CAS  Google Scholar 

  21. Ren Z, Mao Y, Zhi Q, Xu C, Dong T (2007) J Radioanal Nucl Chem 272:209–213

    Article  CAS  Google Scholar 

  22. Runke J, Dullmann ChE, Eberhardt K, Ellison PA, Gregorich KE, Hofmann S, Jager E, Kindler B, Kratz JV, Krier J, Lommel B, Mokry C, Nitsche H, Roberto JB, Rykaczewski KP, Schadel M, Thorle-Pospiech P, Trautmann N, Yakushev A (2014) J Radioanal Nucl Chem 299:1081–1084

    Article  CAS  Google Scholar 

  23. Bhattacharya R (2013) Nucl Phys A 913:1–18

    Article  CAS  Google Scholar 

  24. Lesinski T, Bender M, Bennaceur K, Duguet T, Meyer J (2007) Phys Rev C 76:014312

    Article  Google Scholar 

  25. Zalewski M, Dobaczewski J, Satuła W, Werner TR (2008) Phys Rev C 77:024316

    Article  Google Scholar 

  26. Schwierz N, Wiedenhover I and Volya A (2007) arXiv:0709.3525

  27. Bastin B, Grevy S, Sohler D, Sorlin O, Dombradi Zs, Achouri NL et al (2007) Phys Rev Lett 99:022503

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks the University Grants Commission for support by the Emeritus Fellowship [No. F.6-34/2011(SA – II)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupayan Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, R. Uses of tensor-induced spin–orbit splitting to locate spherical doubly-magic SHE. J Radioanal Nucl Chem 302, 797–801 (2014). https://doi.org/10.1007/s10967-014-3243-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3243-6

Keywords

Navigation