Skip to main content
Log in

Phase analysis of the solidified KF–(LiF–NaF–UF4)–ZrF4 molten electrolytes for the electrowinning of uranium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The X-ray diffraction (XRD) phase analysis of different solidified uranium-based fluoride systems ((LiF–NaF)eut–UF4; (KF–LiF–NaF)eut–UF4; (LiF–NaF)eut–UF4–ZrF4 and (KF–LiF–NaF)eut–UF4–ZrF4) were examined in order to provide the basis for pyro-electrochemical extraction of uranium in molten fluorides. Several uranium-based species (Na2UF6, Na3UF7, K2UF6, K3UF7, UO2, K3UO2F5) were identified in the solidified melts. The role of oxygen in argon atmosphere was found to be critical in the formation of uranium species during the melting and solidification. In order to reduce the accumulated level of free oxygen traces in our experiments, zirconium (in the form of ZrF4) was used inside the melt as an oxygen buffer. It was found that ZrF4 can really stabilize the uranium species by complexation and protects them against the oxygenation. The results of this work highlight the importance of oxygen removal for obtaining pure deposit in the electrorefinning of uranium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A Technology Roadmap for Generation IV Nuclear Energy Systems (2002) US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, GIF-002-00. http://gif.inel.gov. Accessed 20 Dec 2002

  2. Rosenthal MW, Haubenreich PN, McCoy HE, McNeese LE (1971) At Energy Rev 9:601–650

    CAS  Google Scholar 

  3. McFarlane HF, Lineberry MJ (1997) Prog Nucl Energy 31:155–173

    Article  CAS  Google Scholar 

  4. Hill DL, Perano J, Osteryoung RA (1960) J Electrochem Soc 107:698–705

    Article  CAS  Google Scholar 

  5. Stromatt RW (1963) J Electrochem Soc 110:C181–C184

    Article  Google Scholar 

  6. Stromatt RW (1963) J Electrochem Soc 110:1277–1282

    Article  CAS  Google Scholar 

  7. Flengas SN (1961) Can J Chem 39:773–784

    Article  CAS  Google Scholar 

  8. Serrano K, Taxil P (1999) J Appl Electrochem 29:505–510

    Article  CAS  Google Scholar 

  9. Poa DS, Tomczuk Z, Steunenberg RK (1988) J Electrochem Soc 135:1161–1166

    Article  CAS  Google Scholar 

  10. Caligara F, Martinot L, Duyckaerts G (1967) Bull Soc Chim Belg 76:5–14

    Article  CAS  Google Scholar 

  11. Caligara F, Martinot L, Duyckaerts G (1967) Bull Soc Chim Belg 76:15–27

    Article  CAS  Google Scholar 

  12. Caligara F, Martinot L, Duyckaerts G (1967) Bull Soc Chim Belg 76:26–32

    Article  CAS  Google Scholar 

  13. Caligara F, Martinot L, Duyckaerts G (1967) Bull Soc Chim Belg 76:210–211

    Google Scholar 

  14. Caligara F, Martinot L, Duyckaerts G (1968) J Electroanal Chem Interfacial Electrochem 16:335–340

    Article  CAS  Google Scholar 

  15. Inman D, Hills GJ, Young L, Bockris JO’M (1959) Trans Faraday Soc 55:1904–1914

    Article  CAS  Google Scholar 

  16. Partridge BA (1961) J Inorg Nucl Chem 19:379–380

    Article  Google Scholar 

  17. Gruen DM, Osteryoung RA (1960) Ann NY Acad Sci 79:897–907

    Article  CAS  Google Scholar 

  18. Leseur A (1969) Technical report CEA-R-3793, Commisariat al’E´ nergie Atomique

  19. Roy JJ, Grantham LF, Grimmett DL, Fusselman SP, Krueger CL, Storvick TS, Inoue T, Sakamura Y, Takahashi N (1996) J Electrochem Soc 143:2487–2492

    Article  CAS  Google Scholar 

  20. Shirai O, Iwai T, Suzuki Y, Sakamura Y, Tanaka T (1998) J Alloy Compd 271:685–688

    Article  Google Scholar 

  21. Reddy BP, Vandarkuzhali S, Subramanian T, Venkatesh P (2004) Electrochim Acta 49:2471–2478

    Article  CAS  Google Scholar 

  22. Thalmayer CE, Bruckenstein S, Gruen DM (1964) J Inorg Nucl Chem 26:347–357

    Article  CAS  Google Scholar 

  23. Masset P, Bottomley D, Konings R, Malbeck R, Rodrigues A, Serp J, Glatz JP (2005) J Electrochem Soc 152:A1109–A1115

    Article  CAS  Google Scholar 

  24. Wang CS, Liu Y, He H, Gao FX, Liu LS, Chang SW, Guo JH, Chang L, Li RX, Ouyang YG (2013) J Radioanal Nucl Chem 298:581–586

    Article  CAS  Google Scholar 

  25. Kuznetsov SA, Hayashi H, Minato K, Gaune-Escard M (2005) J Electrochem Soc 152:C203–C212

    Article  CAS  Google Scholar 

  26. Serrano K, Taxil P (1999) J Appl Electrochem 29:497–503

    Article  CAS  Google Scholar 

  27. Willit JL, Miller WE, Battles JE (1992) J Nucl Mater 195:229–249

    Article  CAS  Google Scholar 

  28. Cassayre L, Caravaca C, Jardin R, Malbeck R, Masset P, Mendes E, Serp J, Soucek P, Glatz JP (2008) J Nucl Mater 378:79–85

    Article  CAS  Google Scholar 

  29. Souček P, Cassayre L, Malmbeck R, Mendes E, Jardin R, Glatz JP (2008) Radiochim Acta 96:315–322

    Google Scholar 

  30. Iizuka M, Sakamura Y, Inoue T (2006) J Nucl Mater 359:102–113

    Article  CAS  Google Scholar 

  31. Iizuka M, Inoue T, Ougier M, Glatz JP (2007) J Nucl Sci Technol 44:801–813

    Article  CAS  Google Scholar 

  32. Mamantov G, Manning DL (1966) Anal Chem 38:1494–1498

    Article  CAS  Google Scholar 

  33. Clayton FR, Mamantov G, Manning DL (1974) J Electrochem Soc 121:86–90

    Article  CAS  Google Scholar 

  34. Manning DL, Mamantov G (1974) Electrochim Acta 19:177–179

    Article  CAS  Google Scholar 

  35. Mamantov G, Manning DL (1968) J Electroanal Chem 18:309–314

    Article  CAS  Google Scholar 

  36. Manning DL, Mamantov G (1968) J Electroanal Chem 18:137–141

    Article  CAS  Google Scholar 

  37. Korenko M, Straka M, Szatmáry L, Ambrová M, Uhlíř J (2013) J Nucl Mater 440:332–337

    Article  CAS  Google Scholar 

  38. Hamel C, Chamelot P, Laplace A, Walle E, Dugne O, Taxil P (2007) Electrochim Acta 52:3995–4003

    Article  CAS  Google Scholar 

  39. Nourry C, Soucek P, Massot L, Malmbeck R, Chamelot P, Glatz JP (2012) J Nucl Mater 430:58–63

    Article  CAS  Google Scholar 

  40. Afronichkin V, Bovet A (2011) Shishkin. V J Nucl Mater 419:347–352

    Article  Google Scholar 

  41. Straka M, Korenko M, Lisý F (2010) J Radioanal Nucl Chem 284:245–252

    Article  CAS  Google Scholar 

  42. Thoma RE, Insley H, Landau BS, Friedman HA, Grimes WR (1959) J Am Ceram Soc 42:21–26

    Article  CAS  Google Scholar 

  43. Barton CJ, Friedman HA, Grimes WR, Insley H, More RE, Thoma RE (1958) J Am Ceram Soc 41:63–69

    Article  CAS  Google Scholar 

  44. Thoma RE, Insley H, Landau BS, Friedman HA, Grimes WR (1958) J Am Ceram Soc 41:538–544

    Article  Google Scholar 

  45. Weaver GF, Thoma RE, Insley H, Friedman HA, Grimes WR (1958) J Am Ceram Soc 43:213–218

    Article  Google Scholar 

  46. Jones LV, Etter DE, Hudgens CR, Huffman AA, Rhinehammer TB, Rogers NE, Tucker PA, Wittenberg LJ (1962) J Am Ceram Soc 45:79–83

    Article  CAS  Google Scholar 

  47. Eichelberger JF, Hudgens CR, Jones LV, Pish G, Rhinehammer TB, Tucker PA, Wittenberg LJ (1963) J Am Ceram Soc 46:279–283

    Article  CAS  Google Scholar 

  48. Young JP (1967) Inorg Chem 6:1486–1488

    Article  CAS  Google Scholar 

  49. Skiba OV, Smirnov MV, Khazemova TF (1964) Electrochemistry of Molten and Solid Electrolytes, ed. Smirnov M (authorized translation), Consultants Bureau, New York, pp 7–11 (quoted according [27])

  50. Williams DF, Toth LM, Clarno KT (2006) Oak-Ridge National Laboratory, ORNL/TM–2006/12, http:www.ornl.gov/~webworks/cppr/y2006/rpt/124584.pdf (12.02.14)

Download references

Acknowledgments

The Radioactive Waste Repository Authority (RAWRA, Czech Republic) and ACSEPT (EUROATOM FP7 EC) are acknowledged for financial support. This work was also supported by the Science and Technology Assistance Agency under contract No. APVV–0460–10, by the Slovak Grant Agency Vega 2/0116/14 and VEGA 2/0095/12 and by the SUSEN Project CZ.1.05/2.1.00/03.0108 of the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Korenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korenko, M., Straka, M., Uhlíř, J. et al. Phase analysis of the solidified KF–(LiF–NaF–UF4)–ZrF4 molten electrolytes for the electrowinning of uranium. J Radioanal Nucl Chem 302, 549–554 (2014). https://doi.org/10.1007/s10967-014-3219-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3219-6

Keywords

Navigation