Skip to main content

Modeling of fixed-bed adsorption of Cs+ and Sr2+ onto clay–iron oxide composite using artificial neural network and constant–pattern wave approach

Abstract

A low-cost, non-toxic and effective adsorbent constituted by a montmorillonite coated by iron oxides (montmorillonite–iron oxide composite) was prepared to assess its effectiveness in the removal of Cs+ and Sr2+ from aqueous solution. Dynamic adsorption experiments were carried out at room temperature under the effect of various operating parameters such as bed depth Z (5–15 cm), initial cation concentration C 0 (2–50 mg L−1) and volumetric flow rate Q (0.5–8 mL min−1). Column performance has been modeled with constant-pattern wave approach combined to the Freundlich isotherm model and artificial neural network (ANN) models. The time, initial cation concentration, bed depth and volumetric flow rate were chosen as the input variables whereas, the outlet concentration C t was considered as the output variable. The developed network was found to be useful in predicting the breakthrough curves. Experimental data for the used system were well fitted with ANN than the combined constant–pattern wave approach.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Robeau D, Daburon F, Metivier H (2000) Le cesium, de l’environnement a l’homme. Institut de protection et de sûreté nucléaire, EDP Sciences, Fontenay-aux-Roses

    Google Scholar 

  2. Elvan B, Gulten A (2006) Appl Radiat Isot 64:957–964

    Article  Google Scholar 

  3. Papachristodoulou CA, Assimakopoulos PA, Gangas N-HJ (2002) J Colloid Interface Sci 245:32–39

    Article  CAS  Google Scholar 

  4. Xiushen Y, Tengyun L, Quan L, Haining L, Zhijian W (2008) J Colloids Surf A 330(1):21–27

    Article  Google Scholar 

  5. Chakraborty D, Maji S, Bandyopadhyay A, Basu S (2007) Bioresour Technol 98(15):2949–2952

    Article  CAS  Google Scholar 

  6. Park Y, Lee YC, Shin WS, Choi SJ (2012) J Radioanal Nucl Chem 292:837–852

    Article  CAS  Google Scholar 

  7. Manohar DM, Noeline BF, Anirudhan TS (2006) J Appl Clay Sci 292:837–852

    Google Scholar 

  8. Aksoyoglu S (1989) J Radioanal Nucl Chem 1342:393–403

    Article  Google Scholar 

  9. Schwertmann U, Cornell RM (1996) Iron oxides in the laboratory. Preparation and characterization, 2nd edn. VCH Publication, Weinheim

    Google Scholar 

  10. Faur C, Cogunaud A, Dreyfus G, Cloirec PL (2008) Chem Eng J 145:7–15

    Article  CAS  Google Scholar 

  11. Monal D, Pinaki G, Jayanta K (2012) J Taiwan Inst Chem E 43:879–888

    Article  Google Scholar 

  12. Tovar-Gomez R, Moreno-Virgen MR, Dena-Aguilar JA, Hernandez-Montoya V, Bonilla-Petriciolet A, Montes-Moran MA (2013) Chem Eng J 228:1098–1109

    Article  CAS  Google Scholar 

  13. Gamze Turan N, Mesci B, Ozgonenel O (2011) Chem Eng J 171:1091–1097

    Article  Google Scholar 

  14. Ararem A, Bouras O, Arbaoui F (2011) Chem Eng J 172:230–236

    Article  CAS  Google Scholar 

  15. Ararem A, Bouras O, Bouzidi A (2013) J Radioanal Nucl Chem 298:537–545

    Article  CAS  Google Scholar 

  16. Han R, Zou L, Zhao X, Xu Y, Xu F, Li Y, Wang Y (2009) Chem Eng J 149:123–131

    Article  CAS  Google Scholar 

  17. Chern JM, Huang SN (1999) Sep Sci Technol 34:1993–2011

    Article  CAS  Google Scholar 

  18. Lee I-H, Kuan Y-C, Chern J-M (2008) J Hazard Mater 152:241–249

    Article  CAS  Google Scholar 

  19. Pan BC, Meng FW, Chen XQ, Pan BJ, Li XT, Zhang WM, Zhang X, Chen JL, Zhang QX, Sun Y (2005) J Hazard Mater B124:74–80

    Article  Google Scholar 

  20. Tsaptsinos D (1995) Back-propagation and its variation. In: Bulsari AB (ed) Neural networks for chemical engineers, computer-aided chemical engineering. Elsevier Science, London

    Google Scholar 

  21. Bouzidi A, Hanini S, Souahi F, Mohammedi B, Touiza M (2007) J. Appl Sci 7(17):2450–2455

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Algerian Atomic Energy Commission. The authors are grateful for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahmane Ararem.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ararem, A., Bouzidi, A., Mohamedi, B. et al. Modeling of fixed-bed adsorption of Cs+ and Sr2+ onto clay–iron oxide composite using artificial neural network and constant–pattern wave approach. J Radioanal Nucl Chem 301, 881–887 (2014). https://doi.org/10.1007/s10967-014-3200-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3200-4

Keywords

  • Fixed-bed adsorption
  • Composite
  • Caesium
  • Strontium
  • Artificial neural network (ANN)
  • Wave theory
  • Modeling