Abstract
Biosorption of thorium(IV) from aqueous solution by Cystoseira indica alga was investigated in batch and fixed-bed column experiments. In the batch study the effects of pH and initial concentration were investigated. The optimum pH for Th(IV) biosorption was found to be 3.5. The experimental isotherms obtained at different pH conditions were analyzed using three two-parameter models and three three-parameter models. Among the two-parameter models the Langmuir model and among the three-parameter models the Redlich–Peterson model vividly described the equilibrium data. The results showed that C. indica alga is a homogeneous biosorbent and Th(IV) biosorption is a favorable and physical process. The maximum biosorption capacity from the Langmuir model was 151.3, 195.7 and 120.6 mg/g at pH 2.5, 3.5 and 4.5, respectively. The continuous isotherm obtained from the column data was modeled by the Langmuir model and the maximum biosorption capacity was 283.8 mg/g. The experimental data were fitted by the use of an analytical and a numerical model, namely Clark and mass transfer models. The results showed that the mass transfer model adequately described the experimental data. Sensitivity analysis revealed that the value of k in has more effect than the axial dispersion coefficient (D z) on the shape of breakthrough curve.
This is a preview of subscription content, access via your institution.




References
Jain VK, Pandya RA, Pillai SG, Shrivastav PS (2006) Talanta 70:257–266
Rao TP, Metilda P, Gladis JM (2006) Talanta 68:1047–1064
Salinas-Pedroza MG, Olguin MT (2004) J Radioanal Nucl Chem 260(1):115–118
Anirudhan TS, Rijith S, Tharun AR (2010) Colloids Surf A 368:13–22
Bozkurt SS, Molu ZB, Cavas L, Merdivan M (2011) J Radioanal Nucl Chem 288:867–874
Zou WH, Zhao L, Zho L (2012) J Radioanal Nucl Chem 292:1303–1315
Fu F, Wang Q (2011) J Environ Manag 92:407–418
Wang JL, Chen C (2009) Biotechnol Adv 27:195–226
Colak F, Atar N, Yazicioglu D, Olgun A (2011) Chem Eng J 173:422–428
Farooq U, Kozinski JA, Khan MA, Athar M (2010) Bioresour Technol 101:5043–5053
Faghihiyan H, Peyvandi S (2012) J Radioanal Nucl Chem 293:463–468
Vijayaraghavan K, Yun Y-S (2008) Biotechnol Adv 26:266–291
Demirbas A (2008) J Hazard Mater 157:220–229
Erkaya IK, Arica MY, Akbulut A, Bayramoglu (2011) J Radioanal Nucl Chem 299:1993–2003
Oguz E, Ersoy M (2010) Chem Eng J 164:56–62
Vimala R, Charumathi D, Das N (2011) Desalination 275:291–296
Das N (2010) Hydrometallurgy 103:180–189
Foo KY, Hameed BH (2010) Chem Eng J 156:2–10
Sing A, Kumar D, Gaur JP (2012) Water Res 46:779–788
Ghasemi M, Keshtkar AR, Dabbagh R, Safdari SJ (2011) J Hazard Mater 189:141–149
Keshtkar AR, Kafshgari F, Mousavian MA (2012) J Radioanal Nucl Chem 292:501–512
Montazer-Rahmati MM, Rabbani P, Abdolali A, Keshtkar AR (2011) J Hazard Mater 185:401–407
Pahlavanzadeh H, Keshtkar AR, Safdari J, Abadi Z (2010) J Hazard Mater 175:304–310
Kafshgari F, Keshtkar AR, Mousavian MA (2013) Iran J Environ Health Sci Eng 10:14
Ramezani Moghaddama M, Fatemi S, Keshtkar AR (2013) Chem Eng J 23:294–303
Keshtkar AR, Hassani MA (2014) Korean J Chem Eng 31(2):289–295
Davis TA, Volesky B, Mucci A (2003) Water Res 37:4311–4330
Diniz V, Volesky B (2005) Water Res 39:239–247
Costa JFdeSaS, Vilar VJP, Botelho CMS, da Silva EAB, Boaventura RAR (2010) Water Res 44:3946–3958
Bhainsa KC, D’Souza SF (2009) J Hazard Mater 165:670–676
Anirudhan TS, Sreekumari SS, Jalajamony S (2013) J Environ Radioact 116:141–147
Yan SK, Tan N, Yan XM, Chen F, Long W, Lin YC (2013) Mar Pollut Bull 74:213–219
Al-Asheh S, Banat F (2001) Environ Geol 40(6):693–698
Lopez-Mesas M, Navarretea ER, Carrillo F, Palet C (2011) Chem Eng J 174:9–17
Febrianto J, Kosasih AN, Sunarso J, Ju Y-H, Indraswatib N, Ismadji S (2009) J Hazard Mater 162:616–645
Tsezos M, Volesky B (1981) Biotechnol Bioeng 23:583–604
Gadd GM, White C (1989) Environ Pollut 61:187–197
Hanif MA, Nadeem R, Bhatti HN, Ahmad NR, Ansari TM (2007) J Hazard Mater B 139:345–355
Chibana M, Soudani A, Sinan F, Persin M, Single (2011) Colloid Surf B 82:267–276
Ibrahima HS, Jamil TS, Hegazy EZ (2010) J Hazard Mater 182:842–884
Repo E, Petrus R, Sillanpaa M, Warchoł JK (2011) Chem Eng J 172:376–385
Dursun AY (2006) Biochem Eng J 28:187–195
Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006) J Hazard Mater B 133:304–308
Hamdaoui O, Naffrechoux E (2007) J Hazard Mater 147:401–411
Oubagaranadin JUK, Murthy ZVP (2010) Appl Clay Sci 50:409–413
Karimi M, Shojaei A, Nematollahzadeh A, Abdekhodaie MJ (2012) Chem Eng J 210:280–288
Kleinubing SJ, da Silva EA, da Silva MGC, Guibal E (2011) Bioresour Technol 102:4610–4617
Saha PD, Chakraborty S, Chowdhury S (2012) Colloids Surf B 92:262–270
Izquierdo M, Gabaldon C, Marzal P, Alvarez-Hornos FJ (2010) Bioresour Technol 101:510–517
da Silva EA, Cossich ES, Tavares CRG, Filho LC, Guirardello R (2002) Process Biochem 38:791–799
Barrosa MASD, Silva EA, Arroyo PA, Tavares CRG, Schneider RM, Suszekb M, Sousa-Aguiar EF (2004) Chem Eng Sci 59:5959–5966
Ozdural AR, Alkan A, Kerkhof PJAM (2004) J Chromatogr A 1041:77–85
Acheampong MA, Pakshirajan K, Annachhatre AP, Lens PNL (2013) Ind Eng Chem 19:841–848
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Riazi, M., Keshtkar, A.R. & Moosavian, M.A. Batch and continuous fixed-bed column biosorption of thorium(IV) from aqueous solutions: equilibrium and dynamic modeling. J Radioanal Nucl Chem 301, 493–503 (2014). https://doi.org/10.1007/s10967-014-3129-7
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10967-014-3129-7
Keywords
- Biosorption
- Th(IV)
- Cystoseira indica alga
- Mass transfer model
- Fixed-bed column