Skip to main content
Log in

Effective removal of uranium ions from drinking water using CuO/X zeolite based nanocomposites: effects of nano concentration and cation exchange

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

For the first time, effects of CuO nanoparticles concentration (from 1 to 24.2 wt%) in CuO/NaX nanocomposite and replacing various cations (Ag+, K+, Ca2+, and Mg2+) with Na+ ions in NaX zeolite on removal of uranium ions from drinking water are reported. The removal of uranium was performed under natural conditions of pH, laboratory temperature and the presence of competing cations and anions that are available in tap water of Isfahan city. Characterization of parent NaX zeolite and modified samples were investigated using X-ray fluorescence, X-ray powder diffraction patterns, scanning electron microscopy, and atomic absorption spectroscopy methods. Using Langmuir, Freundlich, and C-models, isotherms of equilibrium adsorption were studied. Results show the removal efficiency and distribution coefficient of NaX zeolite decrease in the presence of other competing anions and cations that exist in drinking water. But, modification of NaX zeolite with various cations and CuO nanoparticles might enhance the ability of X zeolite in removing uranium from drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stalder E, Blanc A, Haldimann M, Dudler V (2012) Chemosphere 86:672–679

    Article  CAS  Google Scholar 

  2. Kumar S, Loganathan VA, Gupta RB, Barnett MO (2011) J Environ Manag 92:2504–2512

    Article  CAS  Google Scholar 

  3. Birke M, Rauch U, Lorenz H, Kringel R (2010) J Geochem Explor 107:272–282

    Article  CAS  Google Scholar 

  4. Nriagu J, Nam DH, Ayanwola TA, Dinh H, Erdenechimeg E, Ochir C, Bolorma TA (2012) Sci Total Environ 414:722–726

    Article  CAS  Google Scholar 

  5. Carvalho FP, Oliveira JM (2010) Environ Int 36:352–360

    Article  CAS  Google Scholar 

  6. Sidhu SH, Keith-Roach MJ, Lloyd JR, Vaughan DJ (2010) Sci Total Environ 408:5690–5700

    Article  Google Scholar 

  7. Milja TE, Prathish KP, Rao TP (2011) J Hazard Mater 188:384–390

    Article  CAS  Google Scholar 

  8. Fathizadeh M, Aroujalian A, Raisi A (2011) J Membr Sci 375:88–95

    Article  CAS  Google Scholar 

  9. Aydin FA, Soylak M (2007) Talanta 72:187–192

    Article  CAS  Google Scholar 

  10. Shinde NR, Bankar AV, Kumar AR, Zinjarde SS (2012) J Environ Manag 102:115–124

    Article  CAS  Google Scholar 

  11. Agrawal YK, Shrivastav P, Menon SK (2000) Sep Purif Technol 200:177–183

    Article  Google Scholar 

  12. Fan FL, Qin Z, Bai J, Rong WD, Fan FY, Tian W, Lei XW, Wang Y, Zhao L (2012) J Environ Radioact 106:40–46

    Article  CAS  Google Scholar 

  13. Nilchi A, Shariati Dehaghan T, Rasouli Garmarodi S (2013) Desalination 321:67–71

    Article  CAS  Google Scholar 

  14. Krestou A, Xenidis A, Panias D (2003) Miner Eng 16:1363–1370

    Article  CAS  Google Scholar 

  15. Baybas D, Ulusoy U (2011) J Hazard Mater 187:241–249

    Article  CAS  Google Scholar 

  16. Mar Camachoa L, Denga S, Parra RR (2010) J Hazard Mater 75:393–398

    Article  Google Scholar 

  17. Weihua Z, Lei Z, Runping H (2009) Chin J Chem Eng 17(4):585–593

    Article  Google Scholar 

  18. Kilincarslan Kaygun A, Akyil S (2007) J Hazard Mater 147:357–362

    Article  Google Scholar 

  19. Olguin MT, Solache-Rios M, Acosta D, Bosch P, Bulbulian S (1999) Micropor Mesopor Mater 28:377–385

    Article  CAS  Google Scholar 

  20. Akyil S, Aslani MAA, Aytas SO (1998) J Alloy Compd 271/273:769–773

    Article  Google Scholar 

  21. Aboul-Fotouh SMK, Hassan MMI (2010) Acta Chim Slov 57:872–879

    CAS  Google Scholar 

  22. Sebastian J, Mohan Jinka K, Vir Jasra R (2006) J Catal 244:208–218

    Article  CAS  Google Scholar 

  23. Schwartzberg AM, Zhang JZ (2008) J Phys Chem C 112:10323–10337

    Article  CAS  Google Scholar 

  24. Zaidi HA, Pant KK (2005) Can J Chem Eng 83:970–977

    Article  CAS  Google Scholar 

  25. Bouvy C, Marine W, Sporken R, Su BL (2007) Colloid Surf A 300:145–149

    Article  CAS  Google Scholar 

  26. Huang M, Xu C, Wu Z, Huang Y, Lin J, Wu J (2008) Dyes Pigments 77:327–334

    Article  CAS  Google Scholar 

  27. Shakur HR (2011) Physica E 44:641–646

    Article  CAS  Google Scholar 

  28. Singh BK, Tomar R, Tomar R, Tomar SS (2011) Micropor Mesopor Mater 142:629–640

    Article  CAS  Google Scholar 

  29. Hernández-Montoya V, Pérez-Cruz MA, Mendoza-Castillo DI, Moreno-Virgen MR, Bonilla-Petriciolet A (2013) J Environ Manag 116:213–221

    Article  Google Scholar 

  30. Taffarel SR, Rubio J (2010) Miner Eng 23:1131–1138

    Article  CAS  Google Scholar 

  31. Shaheen SM, Eissa FI, Ghanem KM, Gamal El-Din HM, Al Anany FS (2013) J Environ Manag 128:514–521

    Article  CAS  Google Scholar 

  32. Kumar Jha V, Nagae M, Matsuda M, Miyake M (2009) J Environ Manag 90:2507–2514

    Article  Google Scholar 

  33. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M (2007) Appl Geochem 22:249–275

    Article  CAS  Google Scholar 

  34. Reed BE, Matsumoto MR (1993) Sep Sci Technol 28:2179–2195

    Article  CAS  Google Scholar 

  35. McKay G, Otterburn MS, Sweeney AG (1981) Water Res 14:14–20

    Google Scholar 

  36. Ozer A, Pirincci HB (2006) J Hazard Mater B137:849–855

    Article  Google Scholar 

  37. Jie Y, Dinghua Y, Peng S, He H (2011) Chin J Catal 32(3):405–411

    Google Scholar 

  38. Zhang J, Singh R, Webley PA (2008) Micropor Mesopor Mater 111:478–487

    Article  CAS  Google Scholar 

  39. Kovacheva P, Arishtirova K, Vassilev S (2001) Appl Catal A Gen 210:391–395

    Article  CAS  Google Scholar 

  40. Huang Q, Xue X, Zhou R (2011) J Mol Catal A 344:74–82

    Article  CAS  Google Scholar 

  41. Mahdavi S, Jalali M, Afkhami A (2012) J Nanopart Res 14:846–864

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Abdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, M.R., Shakur, H.R., Rezaee Ebrahim Saraee, K. et al. Effective removal of uranium ions from drinking water using CuO/X zeolite based nanocomposites: effects of nano concentration and cation exchange. J Radioanal Nucl Chem 300, 1217–1225 (2014). https://doi.org/10.1007/s10967-014-3092-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3092-3

Keywords

Navigation