Skip to main content
Log in

Rapid determination of actinides in seawater samples

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti+3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used to separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1–2 weeks and provide chemical yields of ~30–60 %. This new sample preparation method can be performed in 4–8 h with tracer yields of ~85–95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mexico Finds Stolen Radioactive Material Amid Dirty Bomb Fears. http://www.voanews.com/content/nuclear-material-stolen-in-mexico/1803195.html. Accessed 12 April 13

  2. Japan to Spend Over $300 M On ‘Ice Wall’ To Isolate Fukushima Water Leaks. http://abcnews.go.com/Technology/japan-spend-300m-ice-wall-isolate-fukushima-water/story?id=20144627. Accessed 9 March 2013

  3. Stricklin D, Tjarnhage A, Nygren U (2002) Application of low energy gamma-spectrometry in rapid actinide analysis for emergency preparedness. J Radioanal Nucl Chem 251(1):69–74

    Article  CAS  Google Scholar 

  4. Maxwell S, Culligan B, Hutchison J (2013) Rapid fusion method for determination of plutonium isotopes in large rice samples. J Radioanal Nucl Chem 298:1367–1374

    Article  CAS  Google Scholar 

  5. Hirose K (2009) Plutonium in the ocean environment: its distributions and behavior. J Nucl Radiochem Sci 10(1):R7–R16

    CAS  Google Scholar 

  6. Povinec P, Livingston H, Shima S, Aoyama M, Gastaud J, Goroncy I, Hirose K, Hynh-Ngoc L, Ikeuchi Y, Ito T, LaRosa J, Kwong LLW, Lee S-H, Moriya H, Mulsow S, Oregioni B, Pettersson H, Togawa T (2003) IAEA’97 expedition to the NW Pacific Ocean-results of oceanographic and radionuclide investigations of the water column. Deep-Sea Res II 50:2607–2637

    Article  CAS  Google Scholar 

  7. Lee S, Gastaud J, La Rosa J, Ling Wee Kwong L, Povinec P, Wyse E, Fifield L, Hausladen P, Di Tada L, Santos G (2001) Analysis of plutonium isotopes in marine samples by radiometric, ICP-MS and AMS techniques. J Radioanal Nucl Chem 248:757–764

    Article  CAS  Google Scholar 

  8. Maxwell S, Jones V (2009) Rapid determination of actinides in urine by inductively coupled plasma mass spectrometry and alpha spectrometry: a hybrid approach. Talanta 80(1):143–150

    Article  CAS  Google Scholar 

  9. Ayranov M, Krahenbuhl U, Sahli H, Rollin S, Burger M (2005) Radiochemical separation of actinides from environmental samples for determination with DF-ICP-MS and alpha spectrometry. Radiochim Acta 93(5):249–258

    CAS  Google Scholar 

  10. Quinto F, Steier P, Wallner G, Wallner A, Srncik M, Bichler M, Kutschera W, Terrasi F, Petraglia A, Sabbarese C (2009) The first use of 236U in the general environment and near a shutdown nuclear power plant. Appl Radiat Isot 67:1775–1780

    Article  CAS  Google Scholar 

  11. Hirose K, Sugimura Y (1985) A new method of plutonium speciation in seawater. J Radioanal Nucl Chem 92:363

    Article  CAS  Google Scholar 

  12. Sidhu R (2002) A robust procedure for the determination of plutonium and americium in seawater. J Radioanal Nucl Chem 256:501–504

    Article  Google Scholar 

  13. La Rosa J, Gastaud J, Lagan L, Lee H, Levy-Palomo I, Povinec P, Wyse E (2005) Recent developments in the analysis of transuranics (Np, Pu, Am) in seawater. J Radioanal Nucl Chem 263(2):427–436

    Article  CAS  Google Scholar 

  14. Kim CS, Kim CK (2002) Determination of Pu isotopes in seawater by an on-line sequential injection technique with sector field inductively coupled plasma mass spectrometry. Anal Chem 74:3824–3832

    Article  CAS  Google Scholar 

  15. Zheng J, Yamada M (2012) Determination of plutonium isotopes in seawater reference materials using isotope. Appl Radiat Isot 70(9):1944–1948

    Article  CAS  Google Scholar 

  16. Qiao J, Hou X, Steier P, Golser R (2013) Sequential injection method for rapid and simultaneous determination of 236U, 237Np, and Pu isotopes in seawater. Anal Chem 85:11026–11033

    Article  CAS  Google Scholar 

  17. Maxwell S, Culligan B, Utsey R (2013) Rapid determination of radiostrontium in seawater samples. J Radioanal Nucl Chem 298:867–875. doi:10.1007/s10967-013-2430-1

    Article  CAS  Google Scholar 

  18. Maxwell S, Culligan B, Noyes G, Jones V, Nichols ST, Bernard M (2010) Rapid determination of 237Np and Pu isotopes in urine by inductively-coupled plasma mass spectrometry and alpha spectrometry. Health Phys 101(2):180–186

    Article  Google Scholar 

  19. Zheng J, Yamada M (2006) Inductively coupled plasma-sector field mass spectrometry with a high-efficiency sample introduction system for the determination of Pu isotopes in settling particles at femtogram levels. Talanta 69:1246–1253

    Article  CAS  Google Scholar 

  20. Epov V, Benkhedda K, Cornett RJ, Evans RD (2005) Rapid determination of plutonium in urine using flow injection on-line preconcentration and inductively-coupled plasma mass spectrometry. J Anal At Spectrom 20:424–430

    Article  CAS  Google Scholar 

  21. Kim CS, Vajda N (2007) Determination of Pu isotope concentrations and isotope ratio by inductively coupled plasma mass spectrometry: a review of analytical methodology. J Anal At Spectrom 22:827–841

    Article  CAS  Google Scholar 

  22. Maxwell S, Culligan B, Hutchison J, Utsey R, McAlister D (2013) Rapid determination of 210Po in water samples. J Radioanal Nucl Chem 298(3):1977–1989

    Article  CAS  Google Scholar 

  23. Horwitz P, McAlister D, Bond A, Barrans AB Jr (2005) Novel extraction chromatographic resins based on tetraalkyldiglycolamides: characterization and potential applications. Solvent Extr Ion Exch 23(3):319

    Article  CAS  Google Scholar 

  24. Levy I, Povinec P, Aoyama M, Hirose K, Sanchez-Cabeza J, Comanducci J, Gastaud J, Eriksson M, Hamajima Y, Kim CS, Komura K, Osvath I, Roos P, Yim S (2011) Marine anthropogenic radiotracers in the Southern Hemisphere: new sampling and analytical strategies. Prog Oceanogr 89:120–133

    Article  Google Scholar 

  25. Currie L (1968) Limits for qualitative and quantitative determination. Anal Chem 40:586–593

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed under the auspices of the Department of Energy, DOE Contract No. DE-AC09-96SR18500. The authors wish to acknowledge Staci Britt, Phil Demaere, Jack Herrington and Becky Chavous for their assistance with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherrod L. Maxwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maxwell, S.L., Culligan, B.K., Hutchison, J.B. et al. Rapid determination of actinides in seawater samples. J Radioanal Nucl Chem 300, 1175–1189 (2014). https://doi.org/10.1007/s10967-014-3079-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3079-0

Keywords

Navigation