Skip to main content
Log in

Cloud point extraction and simultaneous spectrophotometric determination of V(V), Co(II) and Cu(II) ions in water samples by 5-Br-PADAP using partial least squares regression

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, a new method has been proposed to simultaneously determine V(V), Co(II) and Cu(II) ions from aqueous solution by spectrophotometry after cloud point extraction using partial least squares regression (PLS). The metal ions in 10 ml of aqueous solution (containing 0.2 M sodium acetate buffer solution, pH 3.5) were formed complexes with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP). Then, Triton X-114 (2 %, v/v) was added to the solution. By increasing the temperature of the solution up to 55 °C, a phase separation occurred. After centrifugation at 3,000 rpm for 10 min, the surfactant-rich phase was dissolved and diluted to 0.5 mL with ethanol. The metal ions were then determined using spectrophotometry. At these optimal extraction and operating conditions, linearity was obeyed in the range 7–300, 3–100 and 15–700 ng mL−1 of V(V), Co(II) and Cu(II), with the detection limit of 2.2, 1.0 and 4.5 ng mL−1, respectively. The relative predictive error for the simultaneous determination of 15 test samples of different concentrations of V(V), Co(II) and Cu(II) was 3.28, 3.64 and 4.04 %, respectively. The root mean square error of prediction for applying the PLS method to 15 synthetic samples in the linear ranges of these metal ions was 3.4, 1.6 and 18.1 ng mL−1. The interference effect of some anions and cations was also tested. The proposed method has been applied successfully to the simultaneous determination of V(V), Co(II) and Cu(II) ions in real matrix samples with the recoveries of 96.75–104.80 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Filik H, Yanaz Z, Apak R (2008) Anal Chim Acta 620:27–33

    Article  CAS  Google Scholar 

  2. Tabrizi AB (2007) J Hazard Mater 139:260–264

    Article  CAS  Google Scholar 

  3. Lemos VA, da França RS, Moreira BO (2007) Sep Purif Technol 54:349–354

    Article  CAS  Google Scholar 

  4. Watanabe H, Tanaka H (1978) Talanta 25:585–589

    Article  CAS  Google Scholar 

  5. Stalikas CD (2002) Trac Trend Anal Chem 21:343–355

    Article  CAS  Google Scholar 

  6. Tani H, Kamidate T, Watanabe H (1997) J Chromatogr A 780:229–241

    Article  CAS  Google Scholar 

  7. Paleologos EK, Giokas DL, Karayannis MI (2005) Trac Trend Anal Chem 24:426–436

    CAS  Google Scholar 

  8. Pourreza N, Rastegarzadeh S, Larki A (2008) Talanta 77:733–736

    Article  CAS  Google Scholar 

  9. Stege PW, Sombra LL, Messina GA, Martinez LD, Silva MF (2009) Anal Bioanal Chem 394:567–573

    Article  CAS  Google Scholar 

  10. Song GQ, Lu C, Hayakawa K, Lin JM (2006) Anal Bioanal Chem 384:1007–1012

    Article  CAS  Google Scholar 

  11. Pérez-Gramatges A, Chatt A (2012) J Radioanal Nucl Chem 294:163–170

    Article  CAS  Google Scholar 

  12. Pérez-Gramatges A, Chatt A (2006) J Radioanal Nucl Chem 269:491–497

    Article  Google Scholar 

  13. Wang CC, Fernández LP, Gómez MR (2013) Anal Chim Acta 768:90–95

    Article  CAS  Google Scholar 

  14. Wang C, Wang L, Zhao Q, Chen J, Zheng L, Zheng M, Zhang R, Wang Z (2013) Anal Methods 5:3688

    Article  CAS  Google Scholar 

  15. Mortada W, Ali A-AZ, Hassanien M (2013) Anal Methods. doi:10.1039/c3ay40885j

    Google Scholar 

  16. Baig JA, Kazi TG, Arain MB, Afridi HI, Mahar KP (2012) J AOAC Int 95:1755–1760

    Article  CAS  Google Scholar 

  17. Ulusoy Hİ, Yılmaz Ö, Gürkan R (2013) Food Chem 139:1008–1014

    Article  CAS  Google Scholar 

  18. Mortada WI, Hassanien MM, El-Asmy AA (2013) Anal Methods 5:530

    Article  CAS  Google Scholar 

  19. Xiang Gq, Wen Sp, Wu Xy, Jiang Xm, He Lj, Liu Yl (2012) Food Chem 132:532–536

    Article  CAS  Google Scholar 

  20. Kazi TG, Shah F, Afridi HI, Baig JA, Soomro AS (2013) J AOAC Int 96:447–452

    Article  CAS  Google Scholar 

  21. Afkhami A, Bahram M (2006) Microchim Acta 155:403–408

    Article  CAS  Google Scholar 

  22. Afkhami A, Madrakian T, Siampour H (2006) J Braz Chem Soc 17:797–892

    Article  CAS  Google Scholar 

  23. Ulusoy Hİ, Gürkan R, Ulusoy S (2012) Talanta 88:516–523

    Article  CAS  Google Scholar 

  24. Zeng C, Xu X, Zhou N, Lin Y (2012) Spectrochim Acta A 94:48–52

    Article  CAS  Google Scholar 

  25. Hassanien MM, Abdel-Rhman MH, El-Asmy AA (2007) Transit Metal Chem 32:1025–1029

    Article  CAS  Google Scholar 

  26. Joereskog KG, Wold HO (1982) Systems under indirect observation: causality, structure, prediction. North Holland, Amsterdam

    Google Scholar 

  27. Otto M, Wegscheider W (1985) Anal Chem 57:63–69

    Article  CAS  Google Scholar 

  28. Khajehsharifi H, Eskandari Z, Sareban N (2012) Arab J Chem. doi:10.1016/j.arabjc.2012.07.015

    Google Scholar 

  29. Cascant M, Kuligowski J, Garrigues S, de la Guardia M (2011) Talanta 85:1721–1729

    Article  CAS  Google Scholar 

  30. Ghasemi JB, Zolfonoun E (2010) Talanta 80:1191–1197

    Article  CAS  Google Scholar 

  31. Li Q, Huang Y, Duan J, Wu L, Tang G, Zhu Y, Min S (2013) Spectrochim Acta A 101:349–355

    Article  CAS  Google Scholar 

  32. Barbeira PJ, Paganotti RS, Assimos AA (2013) Spectrochim Acta A 114:441–448

    Article  CAS  Google Scholar 

  33. Nevado J, Flores JR, Penalvo GC (1997) Anal Chim Acta 340:257–265

    Article  Google Scholar 

  34. Silva MF, Cerutti ES, Martinez LD (2006) Microchim Acta 155:349–364

    Article  CAS  Google Scholar 

  35. Niazi A, Momeni-Isfahani T, Ahmari Z (2009) J Hazard Mater 165:1200–1203

    Article  CAS  Google Scholar 

  36. Wuilloud GM, de Wuilloud JC, Wuilloud RG, Silva MaF, Olsina RA, Martinez LD (2002) Talanta 58:619–627

    Article  CAS  Google Scholar 

  37. Oszwaldowski S (2005) J Chromatogr A 1099:111–120

    Article  CAS  Google Scholar 

  38. Hao YM, Guo ZX, Wang XX, Shen HX (1999) Anal Chim Acta 402:21–28

    Article  CAS  Google Scholar 

  39. Safavi A, Abdollahi H, Hormozi Nezhad MR, Kamali R (2004) Spectrochim Acta A 60:2897–2901

    Article  CAS  Google Scholar 

  40. Shar G, Soomro G (2004) Nucleus 41:77–82

    Google Scholar 

  41. Bahram M, Khezri S (2012) Anal Methods 4:384–393

    Article  CAS  Google Scholar 

  42. Liang P, Yang J (2010) J Food Compos Anal 23:95–99

    Article  CAS  Google Scholar 

  43. Madrakian T, Afkhami A, Siri R, Mohammadnejad M (2011) Food Chem 127:769–773

    Article  CAS  Google Scholar 

  44. Haaland DM, Thomas EV (1988) Anal Chem 60:1193–1202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Hunan Technology Department, China (No. 2013FJ3028) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, J., Huang, K., An, L. et al. Cloud point extraction and simultaneous spectrophotometric determination of V(V), Co(II) and Cu(II) ions in water samples by 5-Br-PADAP using partial least squares regression. J Radioanal Nucl Chem 300, 835–842 (2014). https://doi.org/10.1007/s10967-014-3062-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3062-9

Keywords

Navigation