Skip to main content
Log in

Preparation of pure TiO2 sorption material

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Determination of 236U/238U at natural ratios using accelerator mass spectrometry (AMS) requires overall purity of each step in the sample preparation procedures which are complex and include various chemicals. Therefore, the simplification of the procedures is desirable and can be done by implementing other effective separation materials. Among the prospective sorption materials, hydrated titanium dioxides showed promising properties for uranium extraction from various water samples. This paper shows the preparation of several titanium based sorption materials using an organic precursor and their characterization with several techniques in order to analyse crystal structure (XRPD, SEM, HRTEM, SAED) and residues of organic compounds (TG analysis and IR spectroscopy) and to quantify their sorption properties towards uranium. The practical sorption capacity of one of the prepared materials was as high as 260 mg of uranium per gram. AMS measurements showed that it is possible to prepare sufficiently pure titanium dioxides for the determination of 236U/238U ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Steier P, Bichler M, Keith Fifield L, Golser R, Kutschera W, Priller A, Quinto F, Richter S, Srncik M, Terrasi P, Wacker L, Wallner A, Wallner G, Wilcken KM, Wild EM (2008) Nucl Instrum Meth B 266:2246–2250

    Article  CAS  Google Scholar 

  2. Quinto F, Steier P, Wallner G, Wallner A, Srncik M, Bichler M, Kutschera W, Terrasi F, Petraglia A, Sabbarese C (2009) Appl Radiat Isotopes 67:1775–1780

    Article  CAS  Google Scholar 

  3. Hotchkis MAC, Child D, Fink D, Jacobsen GE, Lee PJ, Mino N, Smith AM, Tuniz C (2000) Nucl Instrum Meth B 172:659–665

    Article  CAS  Google Scholar 

  4. Vockenhuber C, Ahmad I, Golser R, Kutschera W, Liechtenstein V, Priller A, Steier P, Winkler S (2003) Int J Mass Spectrom 223–224:713–714

    Article  Google Scholar 

  5. Buchholz BA, Brown TA, Hamilton TF, Hutcheon ID, Marchetti AA, Martinelli RE, Ramon EC, Tumey SJ, Williams RW (2007) Nucl Instrum Meth B 259:733–738

    Article  CAS  Google Scholar 

  6. Lee SH, Povinec PP, Wyse E, Hotchkis MAC (2008) Appl Radiat Isotopes 66:823–828

    Article  CAS  Google Scholar 

  7. Srncik M, Steier P, Wallner G (2010) Nucl Instrum Meth B 268:1146–1149

    Article  CAS  Google Scholar 

  8. Kim J, Tsouris C, Mayes RT, Oyola Y, Saito T, Janke CJ, Dai S, Schneider E, Sachde D (2013) Sep Sci Technol 48:367–387

    Article  CAS  Google Scholar 

  9. Rao L (2011) Recent international R&D activities in the extraction of uranium from seawater. Lawrence Berkeley National Laboratory, Berkeley

    Google Scholar 

  10. Lehto J, Clearfield A (1987) J Radioanal Nucl Chem 118:1–13

    Article  CAS  Google Scholar 

  11. Crisan M, Braileanu A, Raileanu M, Crisan D, Teodorescu VS, Birjega R, Marinescu VE, Madarasz J, Pokol G (2007) J Therm Anal Calorim 88:171–176

    Article  CAS  Google Scholar 

  12. Valencia S, Vargas X, Rios L, Restrepo G, Marín JM (2013) J Photoch Photobio A 251:175–181

    Article  CAS  Google Scholar 

  13. Abe M (1982) In: Clearfield A (ed) Inorganic ion exchange materials. CRC Press, Florida

    Google Scholar 

  14. Weiser HB, Milligan WO (1933) J Phys Chem US 38:513–519

    Article  Google Scholar 

  15. Comamrmond MJ, Payne TE, Harrison JJ, Thiruvoth S, Wong HK, Aughterson RD, Lumpkin GR, Muller K, Foerstendorf H (2011) Environ Sci Technol 45:5536–5542

    Article  Google Scholar 

  16. Venkataramani B, Gupta AR (1991) Coll Surf 53:1–19

    Article  CAS  Google Scholar 

  17. McNulty GS (2008) Production of titanium dioxide. In: Proceedings NORM V 2007, IAEA, Vienna, p 169–188

  18. Navrátil V (1998) Decin CZT-HG exploration, drilled well DC6. AQUATEST—Stavební geologie a.s. Prague (in Czech)

  19. Popelova A (2001) A study of radionuclides extraction from aqueous systems after degradation of organic complexants. Dissertation thesis, CTU in Prague

  20. Steier P, Dellinger F, Forstner O, Golser R, Knie K, Kutschera W, Priller A, Quinto F, Srncik M, Terrasi F, Vockenhuber C, Wallner A, Wallner G, Wild EM (2010) Nucl Instrum Meth B 268:1045–1049

    Article  CAS  Google Scholar 

  21. Motl A, Šebesta F, John J, Ndiaye I, Němec M, Špendlíková I (2013) J Radioanal Nucl Chem 298:2057–2063

    Google Scholar 

  22. Steier P, Golser R, Kutschera W, Liechtenstein V, Priller A, Valenta A, Vockenhuber C (2002) Nucl Instrum Meth B 188:283–287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Grant Agency of the Czech Technical University in Prague, Grant No. SGS 11/164/OHK4/3T/14, by the MIT CR under Grant No. FR-TI3/245, by the MEYS CR under Grants No. MSM 6840770040, 7AMB12AT022 and CZ14/2012. Special thanks to MSc. Jan Bárta and MSc. Tereza Pavelkova in XRD analyses, to Dr. Jakubec in SEM/TEM analyses, Dr. Martin Vlk in IR analyses and to Drs. Kesner and Pasztor (NICOLET CZ) for special services in IR instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Špendlíková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Špendlíková, I., Raindl, J., Němec, M. et al. Preparation of pure TiO2 sorption material. J Radioanal Nucl Chem 300, 1151–1158 (2014). https://doi.org/10.1007/s10967-014-3061-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3061-x

Keywords

Navigation