Skip to main content
Log in

Online recovery of radiocesium from soil, cellulose and plant samples by supercritical fluid extraction employing crown ethers and calix-crown derivatives as extractants

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Two crown ethers (CEs) viz. dibenzo18crown6, and dibenzo12crown7 and three calix-crown derivatives viz. (octyloxy)calix[4]arene-mono-crown-6 (CMC), calix[4]arene-bis(o-benzocrown-6) (CBC), and calix[4]arene-bis(naphthocrown-6) (CNC) were evaluated for the recovery of 137Cs from synthetic soil, cellulose (tissue paper), and plant samples by supercritical fluid extraction (SFE) route. CEs showed poor extraction of 137Cs from soil matrix. SFE experiments using 1 × 10−3 M solutions of CMC, CBC and CNC in acetonitrile at 3 M HNO3 as modifiers displayed better extraction of 137Cs, viz. 21(±2) % (CMC), 16.5(±3) % (CBC), and 4(±1) % (CNC). It was not possible to recover 137Cs quantitatively from soil matrix. The inefficient extraction of 137Cs from soil matrix was attributed to its incorporation into the interstitial sites. Experiments on tissue papers using CMC showed near quantitative 137Cs recovery. On the other hand, recovery from plant samples varied between 50(±5) % (for stems) and 75(±5) % (for leaves).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR (2000) Sources and effects of ionizing radiation, 2000 Report to the General Assembly. New York

  2. United Nation Scientific Committee on the Effects of Atomic Radiation, UNSCEAR (2008) Sources and effects of ionizing radiation. Annex D: health effects due to radiation from the Chernobyl accident, vol. II. New York

  3. Thakur P, Ballard S, Nelson R (2013) An overview of Fukushima radionuclides measured in the northern hemisphere. Sci Total Environ 458–460:577–613

    Article  Google Scholar 

  4. Zheng J, Tagami K, Watanabe Y, Uchida S, Aono T, Ishii N, Yoshida S, Kubota Y, Fuma S, Ihara S (2012) Isotopic evidence of plutonium release into the environment from the Fukushima NPP accident. Sci Rep 2:304

    Google Scholar 

  5. De Cort M, Dubois G, Fridman Sh D, Germenchuk MG, Izrael Yu A, Janssens A, Jones AR, Kelly GN, Kvasnikova EV, Matveenko I I, Nazarov IM, Pokumeiko Yu M, Sitak VA, Stukin ED, Tabachny LYa, Tsaturov Yu S, Avdyushin SI (1998) Atlas of Caesium Deposition on Europe after the Chernobyl Accident. EUR Report 16733, Office for Official Publications of the European Communities, Luxembourg

  6. Judson BF, Moore RL, van Tuyl HH, Wirta RW (1959) Recovery of radioactive cesium at Hanford. Chem Eng Prog 55(23):1–4

    Google Scholar 

  7. Valsala TP, Joseph A, Shah JG, Raj K, Venugopal V (2009) Synthesis and characterization of cobalt ferrocyanides loaded on organic anion exchanger. J Nucl Mat 384:146–152

    Article  CAS  Google Scholar 

  8. Krtil J, Chavko M (1967) Ion-exchange properties of ammonium salts of heteropolyacids. VII. Sorption of 137Cs and 86Rb on acid and normal ammonium and thallous salts of phosphotungstic and phosphomolybdic acid. J Chrom A 27:460–473

    Article  CAS  Google Scholar 

  9. Romanovskiy VN, Smirnov IV, Babain VA, Todd TA, Herbst RS, Law JD, Brewer KN (2001) The universal solvent extraction (UNEX) process. I. Development of the UNEX process solvent for the separation of cesium, strontium and the actinides from acidic radioactive waste. Solv Extr Ion Exch 19:1–21

    Article  CAS  Google Scholar 

  10. Zalupski PR, Herbst RS, Delmau LH, Martin LR, Peterman DR, Nash KL (2010) Two-phase calorimetry. II. Studies on the thermodynamics of cesium and strontium extraction by mixtures of H+CCD and PEG-400 in FS-13. Solv Extr Ion Exch 28:161–183

    Article  CAS  Google Scholar 

  11. Mohapatra PK, Bhattacharyya A, Manchanda VK (2010) Selective separation of radio-cesium from acidic solutions using supported liquid membrane containing chlorinated cobalt dicarbollide (CCD) in phenyltrifluoromethyl sulphone (PTMS). J Haz Mat 181:679–685

    Article  CAS  Google Scholar 

  12. Schulz WW, Bray LA (1985) Solvent extraction recovery of byproduct 137Cs and 90Sr from HNO3 solutions—a technology review and assessment. Sep Sci Technol 22:191–214

    Article  Google Scholar 

  13. Dietz ML, Horwitz EP, Jensen MP, Rhoads S, Bartsch RA, Palka A, Krzykawski J, Nam J (1996) Substituent effects in the extraction of cesium from acidic nitrate media with macrocyclic polyethers. Solv Extr Ion Exch 14:357–384

    Article  CAS  Google Scholar 

  14. Kumar A, Mohapatra PK, Manchanda VK (1998) Extraction of cesium-137 from nitric acid medium in the presence of macrocyclic polyethers. J Radioanal Nucl Chem 229:169–172

    Article  CAS  Google Scholar 

  15. Haverlock TJ, Bonnesen PV, Sachleben RA, Moyer BA (1997) Applicability of a calixarene-crown compound for the removal of cesium from alkaline tank waste. Radiochim Acta 76:103–108

    CAS  Google Scholar 

  16. Kim SK, Sessler JL, Gross DE, Lee C-H, Kim JS, Lynch VM, Delmau LH, Hay BP (2010) A calix[4]arene strapped calix[4]pyrrole: an ion-pair receptor displaying three different cesium cation recognition modes. J Am Chem Soc 132:5827–5836

    Article  CAS  Google Scholar 

  17. Raut DR, Mohapatra PK, Choudhary MK, Nayak SK (2013) Evaluation of two calix-crown-6 ligands for the recovery of radio cesium from nuclear waste solutions: solvent extraction and liquid membrane studies. J Memb Sci 429:197–205

    Article  CAS  Google Scholar 

  18. Hoyle SL, Grutzeck MW (1989) Incorporation of cesium by hydrating calcium aluminosilicates. J Am Ceram Soc 72:1938–1947

    Article  CAS  Google Scholar 

  19. Mon J, Deng Y, Flury M, Harsh JB (2005) Cesium incorporation and diffusion in cancrinite, sodalite, zeolite, and allophone. Micro Meso Mat 86:277–286

    Article  CAS  Google Scholar 

  20. Van Smit JR, Jacobs JJ (1966) Separation of cesium from fission product wastes by ion exchange on ammonium molybdophosphate. I&EC Proc Des Develop 5:117–122

    Article  CAS  Google Scholar 

  21. Tranter TJ, Herbst RS, Todd TA, Olson AL, Eldredge HB (2002) Evaluation of ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) as a cesium selective sorbent for the removal of 137Cs from acidic nuclear waste solutions. Adv Environ Res 6:107–121

    Article  CAS  Google Scholar 

  22. Chakravarty R, Ram R, Pillai KT, Pamale Y, Kamat RV, Dash A (2012) Ammonium molybdophosphate impregnated alumina microspheres as a new generation sorbent for chromatographic 137Cs/137mBa generator. J Chrom A 1220:82–91

    Article  CAS  Google Scholar 

  23. Raut DR, Mohapatra PK, Manchanda VK, Wattal PK (2012) Effect of irradiation on AMP based resins for cesium separation from HNO3 feed solutions: batch and column studies. J Radioanal Nucl Chem 291:661–666

    Article  Google Scholar 

  24. Samanta SK, Misra BM (1995) Ion exchange selectivity of a resorcinol-formaldehyde polycondensate resin for cesium in relation to other alkali metal ions. Solv Extr Ion Exch 13:575–589

    Article  CAS  Google Scholar 

  25. Darr JA, Poliakoff M (1999) New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem Rev 99:495–541

    Article  CAS  Google Scholar 

  26. Lin Y, Wai CM, Jean FM, Brauer RD (1994) Supercritical fluid extraction of thorium and uranium ions from solid and liquid materials with fluorinated β-diketones and tributyl phosphate. Environ Sci Technol 28:1190–1193

    Article  CAS  Google Scholar 

  27. Wang JS, Koh M, Wai CM (2004) Nuclear laundry using supercritical fluid solutions. Ind Eng Chem Res 43:1580–1585

    Article  CAS  Google Scholar 

  28. Chang F, Kim H, Joo B, Park K, Kim H (2008) Novel CO2-soluble pyridine derivatives and the extraction of heavy metals into ScCO2. J Super Fluids 45:43–50

    Article  CAS  Google Scholar 

  29. Meguro Y, Iso S, Sasaki T, Yoshida Z (1998) Solubility of organophosphorous metal extractants in supercritical carbon dioxide. Anal Chem 70:774–779

    Article  CAS  Google Scholar 

  30. Samsonov MD, Wai CM, Lee Su-Chen, Kulyako Y, Smart NG (2001) Dissolution of uranium dioxide in supercritical fluid carbon dioxide. Chem Comm 1868–1869

  31. Shadrin A, Kamachev V, Murzin A, Shafikov D (2007) Extraction of nitric acid and uranyl nitrate by TBP in HFC-134a. J Super Fluids 42:347–350

    Article  CAS  Google Scholar 

  32. Kumar R, Sivaraman N, Vadivu ES, Srinivasan TG, Vasudeva Rao PR (2003) Complete removal of uranyl nitrate from tissue matrix using supercritical fluid extraction. Radiochim Acta 91:197–201

    Article  CAS  Google Scholar 

  33. Rao A, Kumar P, Ramakumar KL (2008) Study of effects of different parameters on supercritical fluid extraction of uranium from acidic solutions employing TBP as co-solvent. Radiochim Acta 96:787–798

    CAS  Google Scholar 

  34. Myasoedov BF, Kulyako YM, Trofimov TI, Samsonov MD, Malikov DA, Spivakov YB (2009) Recovery of uranium and plutonium from simulated spent nuclear fuel by adducts of organic reagents with HNO3 followed by their separation from fission products by counter current chromatography. Radiochim Acta 97:473–477

    Article  CAS  Google Scholar 

  35. Kanekar AS, Pathak PN, Mohapatra PK (2012) A rapid online estimation method for radiostrontium in soil samples using crown ether and supercritical fluid extraction. Talanta 99:744–749

    Article  CAS  Google Scholar 

  36. Kanekar AS, Pathak PN, Mohapatra PK, Acharya R, Manchanda VK (2012) Supercritical fluid extraction of uranium from sintered oxides (UO2, (U, Th)O2), soil and ore samples using tri-n-butylphosphate and N, N-di-(2-ethylhexyl)isobutyramide as extractants. Desal Water Treat 38:190–194

    Article  Google Scholar 

  37. Kanekar AS, Pathak PN, Mohapatra PK, Manchanda VK (2010) Comparative extraction efficiencies of tri-n-butyl phosphate and N, N-dihexyloctanamide for uranium recovery using supercritical CO2. J Radioanal Nucl Chem 283:789–796

    Article  CAS  Google Scholar 

  38. Pedersen CJ (1988) The discovery of crown ethers. Science 241:536–540

    Article  CAS  Google Scholar 

  39. Izatt RM, Pawlak K, Bradshaw JS, Bruening RL (1991) Thermodynamic and kinetic data for macrocycle interaction with cations and anions. Chem Rev 91:1721–2085

    Article  CAS  Google Scholar 

  40. Wang S, Elshani S, Wai CM (1995) Selective extraction of mercury with ionizable crown ethers in supercritical carbon dioxide. Anal Chem 67:919–923

    Article  CAS  Google Scholar 

  41. Wai CM, Kulyako YM, Myasoedov BF (1999) Supercritical carbon dioxide extraction of caesium from aqueous solutions in the presence of macrocyclic and fluorinated compounds. Mendeleev Comm 9:80–81

    Article  Google Scholar 

  42. Mohapatra PK, Ansari SA, Sarkar A, Bhattacharyya A, Manchanda VK (2006) Evaluation of calix-crown ionophores for selective separation of radio-cesium from acidic nuclear waste solution. Anal Chim Acta 571:308–331

    Article  CAS  Google Scholar 

  43. Shamispur M, Yamini Y, Hasan J (2001) Solubility of large crown ethers in supercritical carbon dioxide. Fluid Phase Equil 186:39–46

    Article  CAS  Google Scholar 

  44. Yadav VB, Mistry KB (1984) Reaction products of triammonium pyrophosphate in different Indian soils. Fertil Res 5:423–434

    Article  CAS  Google Scholar 

  45. Mukhopadhyay PK (2001) In: Proceedings of symposium on intelligent nuclear instrumentation, Mumbai, India, pp. 301

  46. Misra NL, Yadav AK, Dhara S, Mishra SK, Phatak R, Poswal AK, Jha SN, Sinha AK, Bhattacharyya D (2013) Characterization of Sb-doped Bi2UO6 solid solutions by X-ray diffraction and X-ray absorption spectroscopy. Anal Sci 29:579–584

    Article  CAS  Google Scholar 

  47. Dhara S, Misra NL, Aggarwal SK, Venugopal V (2010) Energy dispersive X-ray fluorescence determination of cadmium in uranium matrix using Cd Kα line excited by continuum. Spectrochim Acta, Part B 65:461–465

    Article  Google Scholar 

  48. Dmitriev SA, Barinov AS, Kuptsov VM (2011) Decontamination of sandy soils from 137Cs by reagent treatment with agitation leaching. Radiochemistry 53:437–442

    Article  CAS  Google Scholar 

  49. Dmitriev SA, Barinov AS, Kuptsov VM (2011) Decontamination of 137Cs-contaminated sandy soils by a combination of separation of finely dispersed fraction by sedimentation in water with reagent treatment. Radiochemistry 53:443–448

    Article  CAS  Google Scholar 

  50. Fan QH, Xu JZ, Niu ZW, Li P, Wu WS (2012) Investigation of Cs(I) uptake on Beishan soil combined batch and EDS techniques. Appl Rad Isotopes 70:13–19

    Article  CAS  Google Scholar 

  51. Kulyukhin SA, Krasavina EP, Mizina LV, Rumer IA, Tanashchuk NV, Konovalova NA, Murachev AS, Sergeev VV (2005) Behavior of microamounts of 22Na, 85Sr, 137Cs, and 152Eu in sorption and coprecipitation on mixed potassium neodymium ferrocyanide from solutions. Radiochemistry 47:575–581

    Article  CAS  Google Scholar 

  52. Dunaeva AN, Mironenko MV (2000) Cesium sorption by some clay minerals. Geochem Int 38:184–192

    Google Scholar 

Download references

Acknowledgments

Authors thank Dr. A. Goswami, Head, Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai for his keen interest in this work. They are also thankful to Dr. N. L. Misra, Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai for the analysis of soil by XRD and EDXRF techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Pathak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanekar, A.S., Pathak, P.N. & Mohapatra, P.K. Online recovery of radiocesium from soil, cellulose and plant samples by supercritical fluid extraction employing crown ethers and calix-crown derivatives as extractants. J Radioanal Nucl Chem 300, 1281–1289 (2014). https://doi.org/10.1007/s10967-014-3034-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3034-0

Keywords

Navigation