On peculiarities of vertical distribution of 239,240Pu, 238Pu and 137Cs activity concentrations and their ratios in lake sediments and soils

  • B. LukšienėEmail author
  • E. Maceika
  • N. Tarasiuk
  • E. Koviazina
  • V. Filistovič
  • Š. Buivydas
  • A. Puzas


Distributions of 239,240Pu, 238Pu and 137Cs activity concentrations in the cores of sediments in the shallow lake, flooded and upland forest soils taken in the vicinity of Vilnius city were analyzed. The radiochemical, α-spectrometric and mass spectrometric methods were used for the plutonium evaluation and γ-spectrometry was used for the radiocesium evaluation. The only peak of enhanced radionuclide activity concentrations was determined for the lake bottom sediments, whereas vertical profiles of the radionuclide activity concentrations in flooded and upland forest soil cores were distinguished by two peaks. The obtained values of the activity concentration ratio 238Pu/239,240Pu and the isotopic ratio 240Pu/239Pu indicated that the global fallout was a source of plutonium in the investigated environment. Chernobyl-derived radiocesium was detected solely in the surface layers (2–11 cm) of the studied sample cores. The contribution of the Chernobyl deposits amounted to about 2.26, 6.11 and 20.9 % of the total radiocesium inventory in the bottom sediments, the upland soil and flooded soil, respectively.


238Pu 239,240Pu 137Cs Origin Lake sediments Upland and flooded soils Vertical profiles 



This research was funded by a Grant (No. MIP-041/2012) from the Research Council of Lithuania. We also wish to acknowledge the helpful comments and suggestions of the editors and of two anonymous referees.


  1. 1.
    Toribio M, García JF, Rauret G, Pilviö R, Bicke M (2001) Anal Chim Acta 447:179CrossRefGoogle Scholar
  2. 2.
    Cooper LW, Kelley JM, Bond LA, Orlandini KA, Grebmeier JM (2000) Mar Chem 69:253CrossRefGoogle Scholar
  3. 3.
    Varga Z (2007) Anal Bioanal Chem 389:725CrossRefGoogle Scholar
  4. 4.
    Kozlovska-Kedziora J, Petraitis E, Valančius K, Grabas K (2011) In: Cygas D, Froehner KD (eds) Environmental Engineering, Vilnius Gediminas Technical University Press “Technika” Accessed 27 Jan 2014
  5. 5.
    Liužinas R, Jankevičius K, Šalkauskas M (2005) Ann Geographicae (Vilnius, Lithuania) 38:44Google Scholar
  6. 6.
    Tarasiuk N, Koviazina E, Kubarevičienė V, Shliahtich E (2007) J Environ Radioact 93:100CrossRefGoogle Scholar
  7. 7.
    Talvitie NA (1971) Anal Chem 43:1827CrossRefGoogle Scholar
  8. 8.
    Holm E (1984) Int J Appl Rad Isot 35:285CrossRefGoogle Scholar
  9. 9.
    Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Maxwell SL III, Nelson MR (1995) Anal Chim Acta 310:63CrossRefGoogle Scholar
  10. 10.
    Lukšienė B, Druteikienė R, Gvozdaitė R, Gudelis A (2006) J Environ Radioact 87:305CrossRefGoogle Scholar
  11. 11.
    Druteikienė R, Morkūnienė R, Lukšienė B (2011) Lithuanian J Phys 51:75CrossRefGoogle Scholar
  12. 12.
    Puzas A, Remeikis V, Ežerinskis Ž, Serapinas P, Plukis A, Duškesas G (2010) Lith J Phys 50(4):445CrossRefGoogle Scholar
  13. 13.
    Plukienė R, Plukis A, Puzas A, Remeikis V, Duškesas G, Germanas D (2011) Progr Nucl Sci Technol 2:421Google Scholar
  14. 14.
    Eriksson M, Holm E, Roos P, Dahlgaard H (2004) J Environ Radioact 75:285CrossRefGoogle Scholar
  15. 15.
    Kruse-Irmer S, Giani L (2003) J Plant Nutr Soil Sci 166:635CrossRefGoogle Scholar
  16. 16.
    Sholkovitz ER, Carey AE, Cochran JK (1982) Nature 300:159CrossRefGoogle Scholar
  17. 17.
    UNSCEAR (2000) Sources, effects and risks of ionizing radiation, Annex J: Exposures and effects of the Chernobyl accident, United Nations, New York. Accessed 01 Mar 2010
  18. 18.
    Koide M, Bertine KK, Chow TJ, Goldberg ED (1985) Earth Planet Sci Lett 72:1CrossRefGoogle Scholar
  19. 19.
    Muramatsu Y, Uchida S, Tagami K, Yoshida S, Fujikawa T (1999) J Anal At Spectrom 14:859CrossRefGoogle Scholar
  20. 20.
    Lehto J, Vaaramaa K, Leskinen A (2013) J Environ Radioact 116:124CrossRefGoogle Scholar
  21. 21.
    Antovic NM, Vukotic P, Svrkota N, Andrukhovich SK (2012) J Environ Radioact 110:90CrossRefGoogle Scholar
  22. 22.
    Hölgye Z, Schlesingerová E, Tecl J, Filgas R (2004) J Environ Radioact 71:115CrossRefGoogle Scholar
  23. 23.
    Popov L, Mihailova G, Naidenov I (2010) J Radioanal Nucl Chem 285:223CrossRefGoogle Scholar
  24. 24.
    Liao H, Zheng J, Wu F, Yamada M, Tan M, Chen J (2008) Appl Radiat Isot 66:1138CrossRefGoogle Scholar
  25. 25.
    Ueda S, Ohtsuka Y, Kondo K, Hisamatsu S (2009) J Environ Radioact 100:835CrossRefGoogle Scholar
  26. 26.
    Zheng J, Liao H, Wu F, Yamada M, Fu P, Liu C, Wan G (2008) J Radioanal Nucl Chem 275:37CrossRefGoogle Scholar
  27. 27.
    Ketterer ME, Hafer KM, Mietelski JW (2004) J Environ Radioact 73:183CrossRefGoogle Scholar
  28. 28.
    Robbins JA, Mudroch A, Oliver BG (1990) Can J Fisher Aquat Sci 47:572CrossRefGoogle Scholar
  29. 29.
    Pedersen K (2005) J Nucl Radiochem Sci 6:11CrossRefGoogle Scholar
  30. 30.
    Tarasiuk N, Moisejenkova A, Koviazina E (2010) J Environ Radioact 101:883CrossRefGoogle Scholar
  31. 31.
    Bunzl K, Kracke W (1988) J Environ Radioact 8:1CrossRefGoogle Scholar
  32. 32.
    Winkelbauer J, Völkel J, Leopold M, Hürkamp K, Dehos R (2012) Eur J Forest Res 131:1585CrossRefGoogle Scholar
  33. 33.
    Copplestone D, Johnson MS, Jones SR (2001) J Environ Radioact 55:93CrossRefGoogle Scholar
  34. 34.
    Anspaugh LR, Simon SL, Gordeev KI, Likhtarev IA, Maxwell RM, Shinkarev SM (2002) Health Phys 82:669CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • B. Lukšienė
    • 1
    Email author
  • E. Maceika
    • 1
  • N. Tarasiuk
    • 1
  • E. Koviazina
    • 1
  • V. Filistovič
    • 1
  • Š. Buivydas
    • 1
  • A. Puzas
    • 1
  1. 1.State Research Institute Center for Physical Sciences and TechnologyVilniusLithuania

Personalised recommendations