Skip to main content
Log in

A new timescale dimension for migration experiments in clay: proof of principle for the application of miniaturized clay column experiments (MCCE)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Geological clay formations are often considered as a host rock for a future nuclear waste repository. Many studies concerning sorption or desorption experiments with metal ions like radionuclides or other relevant substances (e.g. metal complexing ligands) onto/from geological clay samples are performed with the batch techniques where only small amounts of the homogenized clay is in contact with the appropriate metals diluted in high volumes of aqueous solutions. This unnatural contact of clay with water can lead to high bias or not transferable results for a risk assessment study of a future repository. Diffusion experiments as an alternative and more natural experimental tool have the lack of huge time consuming when the migration of higher valent metal ions is considered. With the herein described new miniaturized clay column setup a linker between the unnatural batch techniques and the time consuming diffusion experiments is installed. The presented miniaturized clay column experiments (MCCE) derived and modified from high performance liquid chromatography can be applied in a lot of geochemical studies. Using MCCE, migration experiments of inert tracers (iodide), natural organic matter as complexing ligands (lactate and salicylate) as well as trivalent metal ions (europium) in compacted clay can be performed within a short time span of a few minutes or hours only in contrast to several months by use of classical diffusion or column methods. As preliminary results, typical migration times through miniaturized clay columns (20 × 3.5 mm, L × ID) of iodide as inert tracer are in the range of 145 min, meanwhile increasing retention times of salicylate from about 390 min in the absence of Eu to migration times in the range of 420–470 min in the presence of different Eu concentration can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ericsson LO (1999) Eng Geol 52:305–317

    Article  Google Scholar 

  2. Bradbury MH, Baeyens B (2003) Far-field sorption data bases for performance assessment of high-level radioactive waste repository in an undisturbed Opalinus clay host rock. PSI Bericht Nr. 03-08, Nagra NTB 02-19, Villigen

  3. Hummel W, Schneider J (2005) Chimia 59:909–915

    Article  CAS  Google Scholar 

  4. Madsen FT (1998) Clay Miner 33:109–129

    Article  CAS  Google Scholar 

  5. Palágyi Š, Vodičková H (2009) J Radioanal Nucl Chem 280:3–14

    Article  Google Scholar 

  6. Kautenburger R, Beck HP (2008) ChemSusChem 1:295–297

    Article  CAS  Google Scholar 

  7. Schmeide K, Bernhard G (2010) Appl Geochem 25:1238–1247

    Article  CAS  Google Scholar 

  8. Banik NL, Buda RA, Bürger S, Kratz JV, Trautmann N (2007) Radiochim Acta 95:569–575

    Article  CAS  Google Scholar 

  9. Um W, Serne RJ, Brown CF, Last GV (2007) J Contam Hydrol 93:255–269

    Article  CAS  Google Scholar 

  10. Lee MH, Jung EC, Song K, Han YH, Shin HS (2011) J Radioanal Nucl Chem 287:639–645

    Article  CAS  Google Scholar 

  11. Lippold H, Müller N, Kupsch H (2005) Appl Geochem 20:1209–1217

    Article  CAS  Google Scholar 

  12. Kautenburger R, Beck HP (2010) J Environ Monit 12:1295–1301

    Article  CAS  Google Scholar 

  13. Wang YQ, Fan QH, Li P, Zheng XB, Xu JZ, Jin YR, Wu WS (2011) J Radioanal Nucl Chem 287:231–237

    Article  CAS  Google Scholar 

  14. Kautenburger R (2011) J Anal At Spectrom 26:2089–2092

    Article  CAS  Google Scholar 

  15. Shackelford CD (1991) J Contam Hydrol 7:177–217

    Article  CAS  Google Scholar 

  16. Van Loon LR, Baeyens B, Bradbury MH (2005) Appl Geochem 20:2351–2363

    Article  Google Scholar 

  17. Van Loon LR, Soler JM, Müller W, Bradbury MH (2004) Environ Sci Technol 38:5721–5728

    Article  Google Scholar 

  18. Samper J, Yi S, Naves A (2010) Phys Chem Earth 35:207–216

    Article  Google Scholar 

  19. Van Loon LR, Wersin P, Soler JM, Eikenberg J, Gimmi T, Hernán P, Dewonck S, Savoye S (2004) Radiochim Acta 92:757–763

    Article  Google Scholar 

  20. García-Gutiérrez M, Cormenzana JL, Missana T, Alonso U, Mingarro M (2011) Phys Chem Earth 36:1708–1713

    Article  Google Scholar 

  21. Appelo CAJ, Wersin P (2007) Sci Environ Technol 41:5002–5007

    Article  CAS  Google Scholar 

  22. Soler JM, Samper J, Yllera A, Hernández A, Quejido A, Fernández M, Yang C, Naves A, Hernán P, Wersin P (2008) Phys Chem Earth 33:196–207

    Article  Google Scholar 

  23. Tevissen E, Soler JM, Montarnal P, Gautschi A, Van Loon LR (2004) Radiochim Acta 92:781–786

    Article  CAS  Google Scholar 

  24. Wersin P, Soler JM, Van Loon LR, Eikenberg J, Baeyens B, Grolimund D, Gimmi T, Dewonck S (2008) Appl Geochem 23:678–691

    Article  CAS  Google Scholar 

  25. Samper J, Dewonck S, Zheng L, Yang Q, Naves A (2008) Phys Chem Earth 33:1000–1008

    Article  Google Scholar 

  26. Naves A, Dewonck S, Samper J (2010) Phys Chem Earth 35:242–247

    Article  Google Scholar 

  27. Maes N, Wang L, Hicks T, Bennett D, Warwick P, Hall T, Walker G, Dierckx A (2006) Phys Chem Earth 31:541–547

    Article  Google Scholar 

  28. Maes N, Bruggeman C, Govaerts J, Martens E, Salah S, Van Gompel M (2011) Phys Chem Earth 36:1590–1599

    Article  Google Scholar 

  29. Altmann S, Tournassat C, Goutelard F, Parneix JC, Gimmi T, Maes N (2012) Appl Geochem 27:463–478

    Article  CAS  Google Scholar 

  30. Lewis J, Sjöstrom J (2010) J Contam Hydrol 115:1–13

    Article  CAS  Google Scholar 

  31. Yang Y, Saiers JE, Xu N, Minasian SG, Tyliszczak T, Kozimor SA, Shuh DK, Barnett MO (2012) Environ Sci Technol 46:5931–5938

    Article  CAS  Google Scholar 

  32. Lauber M, Baeyens B, Bradbury MH (2000) Sorption of Cs, Sr, Ni, Eu, Th, Sn and Se on Mont Terri Opalinus clay: physico-chemical characterisation and sorption measurements, PSI Bericht Nr 00-10 Villigen, and Nagra NTB 00-11, Wettingen

  33. Bryan ND, Barlow J, Warwick P, Stephens S, Higgo JJW, Griffin D (2005) J Environ Monit 7:196–202

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the German Federal Ministry of Economics and Technology (Bundesministerium für Wirtschaft und Technologie, BMWi), Project Reference Number 02E10196 and 02E10991.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Kautenburger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kautenburger, R. A new timescale dimension for migration experiments in clay: proof of principle for the application of miniaturized clay column experiments (MCCE). J Radioanal Nucl Chem 300, 255–262 (2014). https://doi.org/10.1007/s10967-014-3017-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3017-1

Keywords

Navigation