Skip to main content

A radioanalytical phantom for assessing the efficacy of electrokinetic decontamination of entrained radioactivity within concrete media

Abstract

A phantom for the evaluation of electrokinetic remediation of radioactive species from water saturated concrete is described. The phantom has been designed to be a general analogue for environments where structural concrete is saturated by radioactive aqueous solutions and where electrokinetic remediation may be deployed. It is also a specific analogue for the walls of storage ponds for legacy spend nuclear fuel pins where the pond water comprises a large volume of hazardous active waste that may penetrate the pond wall. The fabricated phantom was evaluated using a fixed electrical potential to monitor the rate of cationic transport of K+ through concrete samples of different thickness (20 and 35 mm respectively). Results of the evaluation show K+ diffusion coefficients of 5.20 × 10−13 and 7.61 × 10−13 m2 s−1 for the 20 mm and 35 mm samples, consistent with those seen in literature for the transport of caesium through concrete of similar thickness. The phantom offers a means of experimental validation of computational electrokinetic models as well as providing a basis to test the effects of electrode material on ionic transport rates, to interrogate the effects of pH on all components of the system, and as a basis for instruction, education and training in nuclear decommissioning and waste treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Nuclear Decommissioning Authority (2010) The UK Radioactive Waste Inventory. www.nda.gov.uk/ukinventory/the_inventory/2010-inventory.cfm. Accessed 27 Jan 2014

  2. 2.

    McKie R (2009) Sellafield: the most hazardous place in Europe, the observer. http://www.theguardian.com/environment/2009/apr/19/sellafield-nuclear-plant-cumbria-hazards. Accessed 27 Jan 2014

  3. 3.

    Reddy KR, Cameselle C (2009) Electrochemical remediation technologies for polluted soils, sediments and groundwater, 1st edn. Wiley, New York

    Book  Google Scholar 

  4. 4.

    Sharp SR, Clemeña GG, Virmani YP, Stoner GE, Kelly RG (2002) Federal Highways Administration, US Department of Transport. www.fhwa.dot.gov/publications/research/infrastructure/structures/02107/. Accessed 27 Jan 2014

  5. 5.

    Reddy KR, Xu CY, Chinthamreddy S (2001) J Hazard Mater 84:279–296

    Article  CAS  Google Scholar 

  6. 6.

    Castellote M, Botija S (2011) J Appl Electrochem 41:695–703

    Article  CAS  Google Scholar 

  7. 7.

    Castellote M, Botija S, Andrade C (2010) J Appl Electrochem 40:1195–1208

    Article  CAS  Google Scholar 

  8. 8.

    Popov K, Glazkova I, Yachmenev V, Nikolayev A (2008) Enrivon Pollut 153:22–28

    Article  CAS  Google Scholar 

  9. 9.

    Bostick WD, Bush SA, Marsh GC, Henderson HM, Box WD, Morgan IL (1993) Electroosmotic decontamination of Concrete. ORNL, Tennessee, Report under DOE contract DE-AC05-84OR21400

  10. 10.

    Popov K, Glazkova I, Myagkov S, Petrov A, Sedykh E, Bannykh L, Yachmenev V (2007) Colloid Surf 299:198–202

    Article  CAS  Google Scholar 

  11. 11.

    Kim GN, Choi WK, Lee KW (2010) J Appl Electrochem 40:1209–1216

    Article  CAS  Google Scholar 

  12. 12.

    Yurchemko AY, Karlin YV, Nikolaev AN, Karlina OK, Barinov AS (2009) Atom Energy 106:225–230

    Article  CAS  Google Scholar 

  13. 13.

    Napier BA, Droppo JG, Rishel JP (2011) Pacific Northwest National Laboratory, US Department of Energy. http://www.pnl.gov/main/publications/external/technical_reports/PNNL-20173.pdf. Accessed 27 Jan 2014

  14. 14.

    Harris MT, DePaoli DW, Ally MR (1997) Sep Purif Technol 11:173–184

    Article  CAS  Google Scholar 

  15. 15.

    Lima-Ferreira FC, Souza DDN (2011) Nucl Instrum Methods 652:791–793

    Article  CAS  Google Scholar 

  16. 16.

    Cerqueira RAD, Maia F (2012) Radiat Phys Chem 95:174–176

    Article  Google Scholar 

  17. 17.

    Gonzaga NB, Mourão AP, Magalhães MJ, Silva TA (2013) Appl Radiat Isotopes 83:242–244

    Article  CAS  Google Scholar 

  18. 18.

    Shippen BA, Joyce MJ (2011) Nucl Eng Des 241:526–532

    Article  CAS  Google Scholar 

  19. 19.

    Castellote M, Andrade C, Alonso C (2002) Environ Sci Technol 36:2256–2261

    Article  CAS  Google Scholar 

  20. 20.

    Parker AJ, Boxall C, Joyce MJ (2013) J Radioanal Nucl Chem 295:797–802

    Article  CAS  Google Scholar 

  21. 21.

    Sellafield Integrated Waste Strategy—Update to Version 2 (2008) Sellafield Sites Ltd, Cumbria. http://www.sellafieldsites.com/wp-content/uploads/2012/08/Integrated-Waste-Strat-update-to-V2.pdf. Accessed 27 Jan 2014

  22. 22.

    Parker AJ, Boxall C, Joyce MJ (2013) Nucl Instrum Method 722:5–10

    Article  CAS  Google Scholar 

  23. 23.

    Andrade C (1993) Cem Concr Res 23:724–742

    Article  CAS  Google Scholar 

  24. 24.

    Frizon F, Lorente S, Auzuech C (2005) Cem Concr Res 35:2018–2025

    Article  CAS  Google Scholar 

  25. 25.

    Arsenault J (1999) PhD thesis, University of Laval, Canada. http://www-lmdc.insa-toulouse.fr/etud/theses/%25pdf-Arsenault.pdf. Accessed 27 Jan 2014

  26. 26.

    Volchek K, Miah MY, Kuang W, DeMaleki Z, Tezel FH (2011) J Hazard Mater 194:331–337

    Article  CAS  Google Scholar 

  27. 27.

    Lavi N, Groppi F, Alfassi ZB (2004) Radiat Meas 38:139–143

    Article  CAS  Google Scholar 

  28. 28.

    Akhavan A, Shafaatian SMH, Rajabipour F (2012) Cem Concr Res 42:313–320

    Article  CAS  Google Scholar 

  29. 29.

    Elakneswaran Y, Iwasa A, Nawa T, Sato T, Kurumisawa K (2010) Cem Concr Res 40:1756–1765

    Article  CAS  Google Scholar 

  30. 30.

    DePaoli DW, Harris MT, Morgan IL, Ally MR (1997) Sep Sci Technol 32:387–404

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the United Kingdom’s Nuclear Decommissioning Authority (NDA) through a PhD bursary for Andrew Parker. Colin Boxall is supported by the Lloyd’s Register Foundation, an independent charity that supports the advancement of engineering related education, and funds research and development that enhances the safety of life at sea, on land and in the air. Further thanks go to Pete Jones for helping in the fabrication of the phantom.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Parker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parker, A.J., Joyce, M.J. & Boxall, C. A radioanalytical phantom for assessing the efficacy of electrokinetic decontamination of entrained radioactivity within concrete media. J Radioanal Nucl Chem 300, 769–777 (2014). https://doi.org/10.1007/s10967-014-3015-3

Download citation

Keywords

  • Analytical phantom
  • Electrokinetic remediation
  • Nuclear decommissioning
  • Radioactive waste minimization
  • Electrochemical cell