Skip to main content
Log in

Synthesis, characterization and evaluation of nanocrystalline anatase titania for the degradation of dibutyl phosphate

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Degradation of dibutyl phosphate (DBP) in aqueous solution was successfully demonstrated in this paper using nanoparticles of anatase titania. Nanocrystalline anatase titania employed for the degradation study was synthesized in house by solgel route under stirring mode using titanium ethoxide precursor. The catalyst was characterized using XRD, DRS, BET, TEM, TG–DTA and Raman spectroscopy to establish the catalytic activity and surface morphology. A cylindrical photoreactor was used for the photocatalytic experiments. 10 mg of nano anatase titania and 0.5 mL of 30 % H2O2 were used as catalysts for the degradation of 1,000 mL of 240 mg/L DBP. Ion chromatographic procedure was used for following the DBP degradation. More than 95 % of DBP degradation could be in less than 45 min and the kinetics of DBP was found to follow pseudo first order. It was demonstrated that the photocatalytic efficiency of the synthesized titania was better than P-25 titania.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sood DD, Patil SK (1996) J Radioanal Nucl Chem 203(2):547–573

    Article  CAS  Google Scholar 

  2. Schulz WW, Burger LL, Navratil JD, Bender KP (eds) (1984) Science and Technology of Tributyl Phosphate, Vol.III, CRC Press Inc, Boca Raton

  3. Neace JC (1983) Sep Sci Technol 18:1581

    Article  CAS  Google Scholar 

  4. Mills A, Le Hunte S (1997) J Photochem Photobiol A 108(1):1–35

    Article  CAS  Google Scholar 

  5. Munter R (2001) Proc Estonian Acad Sci Chem 50(2):29–50

    Google Scholar 

  6. Mills A, Davies RH, Worsley D (1993) Chem Soc Rev 22:417–425

    Article  CAS  Google Scholar 

  7. Blake DM (1999) National Renewable Energy Laboratory, 1–160, NREL/TP-570-26797

  8. Gogate PR, Pandit AB (2004) Adv Environ Res 8:501–551

    Article  CAS  Google Scholar 

  9. Gogate PR, Pandit AB (2004) Adv Environ Res 8:553–597

    Article  CAS  Google Scholar 

  10. Grant KE, Mong GM, Clauss SA, Wahl KL, Campbell JA (1997) J Radioanal Nucl Chem 220(1):31–35

    Article  CAS  Google Scholar 

  11. Wilkinson RW, Williams TF (1961) J Chem Soc, 4098–4107. doi:10.1039/JR9610004098

  12. Stieglitz L, Ochsenfeld W, Schieder H (1968) KfK-691. Kernforschungszentrum, Karlsruhe

    Google Scholar 

  13. Maji S, Viswanathan KS (2006) Spectrachim Acta A64:972–976

    Article  Google Scholar 

  14. Hardy CJ (1964) J Chromatogr 13:372–376

    Article  CAS  Google Scholar 

  15. Lash RP, Hill CJ (1979) J Liq Chromatogr Relat Tech 2:417–427

    Article  CAS  Google Scholar 

  16. Velavendan P, Ganesh S, Pandy NK, Kamachi Mudali U, Natarajan R (2012) Desal Wat Treat. doi:10.1080/19443994.2012.708208

    Google Scholar 

  17. Seshadri H, Sinha PK (2012) J Radioanal Nucl Chem 292(2):829–835

    Article  CAS  Google Scholar 

  18. Su C, Hong BY, Tseng CM (2004) Catal Today 96:119–126

    Article  CAS  Google Scholar 

  19. Dicholkar DD, Patil LK, Gaikar VG, Kumar S, Kamachi Mudali U, Natarajan R (2012) J Radioanal Nucl Chem 291:739–743

    Article  CAS  Google Scholar 

  20. Awati PS, Awate SV, Shah PP, Ramaswamy V (2003) Catal Commun 4:393–400

    Article  CAS  Google Scholar 

  21. Cullity BD (1978) Elements of X-ray diffraction, vol Chap.11, 2nd ed edn. Addision-Wesely, Reading, pp 350–368

    Google Scholar 

  22. Venkatachalam N, Palanichamy M, Arabindoo B, Murugesan V (2007) J Mol Catal 266:158–165

    Article  CAS  Google Scholar 

  23. Bhattacharya SK, Datta NC (1969) J Thermal Anal 1:75–96

    Article  Google Scholar 

  24. Ganesh S, Velavendan P, Pandey NK, Ahmed MK, Kamachi Mudali U, Natarajan R (2012) J Radioanal Nucl Chem 293:529–533

    Article  CAS  Google Scholar 

  25. Coleman HM, Vimonses V, Leslie G, Amal R (2007) J Haz Mater 146:496–501

    Article  CAS  Google Scholar 

  26. Seshadri H, Sinha PK (2012) J Radianal Nucl Chem 292(2):649–652

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Seshadri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seshadri, H., Krishan Kumar, Mansi Garg et al. Synthesis, characterization and evaluation of nanocrystalline anatase titania for the degradation of dibutyl phosphate. J Radioanal Nucl Chem 300, 157–162 (2014). https://doi.org/10.1007/s10967-014-2989-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-2989-1

Keywords

Navigation