Skip to main content
Log in

Determination of elements in different parts of goat brain using k 0 instrumental neutron activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Researcher’s interest is increasing worldwide to study the role of trace elements in brain tissues. This paper discusses the application of k 0-instrumental neutron activation analysis to study the distribution of trace elements in seven different anatomical regions of goat brain. These regions include cerebellum, cerebrum, medulla oblongata, meninges, midbrain, pons and thalamus. The analysis protocol followed 1 h irradiation at 10 MW material testing type nuclear research reactor with nominal thermal neutron flux of 2 × 1013 cm−2 s−1. A total of 14 elements, namely Br, Co, Cr, Eu, Fe, Hg, K, Na, Rb, Sb, Sc, Se, Tb and Zn were determined in all parts. Reliability of the method was assessed by analyzing biological reference material IAEA-336 (lichen). On comparing the analytical results with the healthy human brain data, it showed that eight elements (Eu, K, Na, Rb, Sb, Sc, Se, Tb) were found with relatively higher elemental concentrations in human brain. Principal component analysis revealed distribution of seven parts in different three groups having similar elemental concentrations of elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  CAS  Google Scholar 

  2. Yabushita Y, Kanayama Y, Tarohda T, Tuji T, Washiyama K, Amano R (2003) Brain regional distribution of the minor and trace elements, Na, K, Sc, Cr, Mn Co, Zn and Se, in mice bred under Zn-deficient, -adequate and -excessive diets. J Radioanal Nucl Chem 257:399–403

    Article  CAS  Google Scholar 

  3. Panayi AE, Spyrou NM, Ubertalli LC, Akanle OA, Part P (2000) Difference in trace element concentrations between the right and left hemispheres of human brain using INAA. J Radioanal Nucl Chem 244:205–207

    Article  CAS  Google Scholar 

  4. Zecca L, Tampellini D, Rizzio E, Giaveri G, Gallorini M (2001) The determination of iron and other metals by INAA in cortex, cerebellum and putamen of human brain and in their neuromelanins. J Radioanal Nucl Chem 248:129–131

    Article  CAS  Google Scholar 

  5. Liu H-M, Tsai S-JJ, Cheng F-C, Chung S-Y (2000) Determination of trace manganese in the brain of mice subjected to manganese deposition by graphite furnace atomic absorption spectrometry. Anal Chim Acta 405:197–203

    Article  CAS  Google Scholar 

  6. Amano R, Oishi S, Ishie M, Kimura M (2001) Brain regional distributions of the minor and trace elements, Na, Mg, Cl, K, Mn, Zn, Rb and Br, in young and aged mice. J Radioanal Nucl Chem 247:361–384

    Google Scholar 

  7. Stedman JD, Spyrou NM (1998) Hierarchical clustering into groups of human brain regions according to elemental composition. J Radioanal Nucl Chem 236:11–14

    Article  CAS  Google Scholar 

  8. Andrasi E, Varga I, Dozsa A, Reffy A, Nagy GJ (1994) Classification of human brain parts using pattern recognition based on inductively coupled plasma atomic emission spectroscopy and instrumental neutron activation analysis. Chemom Intell Lab Syst 22:107–114

    Article  CAS  Google Scholar 

  9. Duflou H, Maenhaut W (1990) Application of principal component and cluster analysis to the study of the distribution of minor and trace elements in normal human brain. Chemom Intell Lab Syst 9:273–286

    Article  CAS  Google Scholar 

  10. Michalke B, Nischwitz V (2010) Review on metal speciation analysis in cerebrospinal fluid—current methods and results: a review. Anal Chim Acta 682:23–36

    Article  CAS  Google Scholar 

  11. Faa G, Lisci M, Caria MP, Ambu R, Sciot R, Nurchi VM, Silvagni R, Diaz A, Crisponi G (2001) Brain copper, iron, magnesium, zinc, calcium, sulfur and phosphorus storage in Wilson’s disease. J Trace Elem Med Biol 15:155–160

    Article  CAS  Google Scholar 

  12. Preedy VR, Watson RR, Martin CR (2011) Handbook of behavior, food and nutrition. Springer, New York

    Book  Google Scholar 

  13. Ördögh M, Fazekas S, Horváth E, Óváry I, Pogány L, Sziklai IL, Szabó E (1983) The regional distribution of copper and other trace elements in the human brain with special reference to Wilson’s disease. J Radioanal Nucl Chem 79:15–21

    Article  Google Scholar 

  14. Stedman JD, Spyrou NM (1997) Elemental analysis of the frontal lobe of “normal” brain tissue and that affected by Alzheimer’s disease. J Radioanal Nucl Chem 217:163–166

    Article  CAS  Google Scholar 

  15. De Corte F (2001) The standardization of standardless NAA. J Radioanal Nucl Chem 248:13–20

    Article  Google Scholar 

  16. Simonits A, De Corte F, Hoste J (1975) Single comparator methods in reactor neutron activation analysis. J Radioanal Chem 24:31–46

    Article  CAS  Google Scholar 

  17. Wasim M, Arif M, Zaidi JH, Anwar Y (2009) Development and implementation of k 0-INAA standardization at 10 MW Pakistan research reactor-1. Radiochim Acta 97:651–655

    Article  CAS  Google Scholar 

  18. Wasim M, Zaidi JH, Arif M, Fatima I (2008) Development and implementation of k 0-INAA standardization at PINSTECH. J Radioanal Nucl Chem 277:525–529

    Article  CAS  Google Scholar 

  19. Dodoo-Amoo D, Landsberger S (2001) Gamma-ray self attenuation calculations in neutron activation analysis: a problem overlooked. J Radioanal Nucl Chem 248:327–332

    Article  CAS  Google Scholar 

  20. Wasim M (2010) GammaLab: a suite of programs for k 0-NAA and gamma-ray spectrum analysis. J Radioanal Nucl Chem 285:337–342

    Article  CAS  Google Scholar 

  21. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2:37–52

    Article  CAS  Google Scholar 

  22. Vandeginste BGM, Massart DL, Buydens LMC, Jong SD, Lewi PJ, Smeyers-Verbeke J (1998) Handbook of chemometrics and qualimetrics, part B. Elsevier, Amsterdam

    Google Scholar 

  23. Daud M, Wasim M, Khalid N, Zaidi JH, Iqbal J (2009) Assessment of elemental pollution in soil of Islamabad city using instrumental neutron activation analysis and atomic absorption spectrometry techniques. Radiochim Acta 97:117–122

    Article  CAS  Google Scholar 

  24. Wasim M, Hassan MS, Brereton RG (2003) Evaluation of chemometric methods for determining the number and position of components in high-performance liquid chromatography detected by diode array detector and on-flow 1H nuclear magnetic resonance spectroscopy. Analyst 128:1082–1090

    Article  CAS  Google Scholar 

  25. De Corte F, Simonits A (2003) Recommended nuclear data for use in the k 0 standardization of neutron activation analysis. At Data Nucl Data Tables 85:47–67

    Google Scholar 

  26. Guisun Z, Yinson W, Mingguang T, Min Z, Yongjie W, Fulin Z (1991) Preliminary study of trace elements in human brain tumor tissues by instrumental neutron activation analysis. J Radioanal Nucl Chem Art 151:327–335

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Wasim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasim, M., Arif, M. & Iqbal, M.S. Determination of elements in different parts of goat brain using k 0 instrumental neutron activation analysis. J Radioanal Nucl Chem 300, 249–254 (2014). https://doi.org/10.1007/s10967-014-2978-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-2978-4

Keywords

Navigation