Skip to main content
Log in

Determination of concentrations of trace elements in nuclear grade graphite by charged particle activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A programme has been undertaken to develop an in-house standard reference material of graphite using various analytical techniques including nuclear techniques like charged particle activation analysis (CPAA) and neutron activation analysis (NAA). The concentrations of 13 elemental impurities viz Ca, Ti, V, Cr, Fe, Ni, Cu, Zn, Ga, Ge, Sr, Zr, Mo have been determined at mg kg−1 to μg kg−1 levels in graphite by CPAA through instrumental approach using 13 and 18 MeV proton beam from cyclotron at Variable Energy Cyclotron Centre, Kolkata. The analytical results of CPAA have been validated by analyzing the same graphite samples by instrumental NAA. The validation of our analytical results has also been performed by the Z-score tests through the determination of concentrations of the elements of interest in a certified reference material (CRM) taking another CRM as standard. The experimental detection limits of all elements determined in graphite material by CPAA are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shibata T, Sumita J, Tada T, Sawa K (2008) J Nucl Mater 381:204–209

    Article  CAS  Google Scholar 

  2. Plukiene R, Plukis A, Puzas A, Remeikis V, Duškesas G, Germanas D (2011) Prog Nucl Sci Technol 2:421–426

    Google Scholar 

  3. Virgil’ev YS, Kalyagina IP, Zemlyanikin VF, Klimenko AA (2007) At Energy 103(4):780–782

    Article  Google Scholar 

  4. IAEA-TECDOC-813 (1995) Advances in control assembly materials for water reactors. IAEA, Vienna, ISSN 1011-4289

  5. Zhang P, Li Y, Wang W, Gao Z, Wang B (2013) J Nucl Mater 437:350–358

    Article  CAS  Google Scholar 

  6. Bushuev AV, Zubarev VN, Proshin IM (2002) At Energy 92(4):331–335

    Article  CAS  Google Scholar 

  7. Virgil’ev YS (1998) At Energy 84(1):6–13

    Article  Google Scholar 

  8. Takahashi R Toyahara M, Maruki S, Ueda H, Yamamoto T (1999) In: Proceedings of IAEA Technical Committee meeting on nuclear graphite waste management, Manchester UK

  9. Nightingale RE (1962) Nuclear graphite. Academic Press, New York

    Google Scholar 

  10. Watanabe M, Narukawa A (2000) Analyst 125:1189–1191

    Article  CAS  Google Scholar 

  11. Watanabe K, Inagawa J (1996) Analyst 121:623–625

    Article  CAS  Google Scholar 

  12. Zacharia A, Gucer S, Izgi B, Chebotarev A, Karaaslan H (2007) Talanta 72:825–830

    Article  CAS  Google Scholar 

  13. Nadkarni RA (1984) Anal Chem 56:2233–2237

    Article  CAS  Google Scholar 

  14. Buzzelli G, Mosen AW (1977) Talanta 24:383–385

    Article  CAS  Google Scholar 

  15. Kishi TJ (1993) Radioanal Nucl Chem 168:413–415

    Article  CAS  Google Scholar 

  16. Shinde AD, Acharya R, Verma R, Reddy AVR (2012) J Radioanal Nucl Chem 294:409–412

    Article  CAS  Google Scholar 

  17. Doll C, Finn E, Cantaloub M, Greenwood L, Kephart J, Kephart RF (2013) J Radioanal Nucl Chem 295:331–334

    Article  CAS  Google Scholar 

  18. Schweikert EA (1980) Anal Chem 52:827A–844A

    Article  CAS  Google Scholar 

  19. Yagi M, Masumoto K (1985) J Radioanal Nucl Chem 91:379–387

    Article  CAS  Google Scholar 

  20. Rao VR, Khathing DT, Chowdhury DP, Gangadharan S (1991) Meas Sci Technol 2:610–615

    Article  CAS  Google Scholar 

  21. Ziegler JF, Ziegler MD, Biersack JP (2008) The stopping and range of ions in matter, SRIM—Version 2008.04

  22. http://www.jcprg.org/exfor/

  23. Kuhnhenn J, Herpers U, Glasser W, Michel R, Kubik PW, Suter M (2001) Radiochim Acta 89:697–702

    Article  CAS  Google Scholar 

  24. Firestone RB, Shirley VS (eds) (1999) Table of isotopes, 8th edn. Wiley, New York

    Google Scholar 

  25. De Corte F, Simonits A (1989) J Radioanal Nucl Chem 133:43–130

    Article  Google Scholar 

  26. Ricci E, Hahn RL (1965) Anal Chem 37:742–748

    Article  CAS  Google Scholar 

  27. Datta J, Chowdhury DP, Verma R, Reddy AVR (2012) J Radioanal Nucl Chem 294:261–265

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Authors are thankful to the reactor personnel of DHRUVA reactor, Dr. S. V. Thakare, and Mr. K. C. Jagadeesan, RPhD, BARC for their help during the irradiation. Authors thank to BRIT and Health Physics Division, BARC, VECC, for their help and support during transport and handing of radioactive materials. The Authors are also thankful to Mr. A. A. Mallick, ACD, BARC, VECC, for his co-operation during counting measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Datta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, J., Chowdhury, D.P. & Verma, R. Determination of concentrations of trace elements in nuclear grade graphite by charged particle activation analysis. J Radioanal Nucl Chem 300, 147–152 (2014). https://doi.org/10.1007/s10967-014-2977-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-2977-5

Keywords

Navigation