Skip to main content
Log in

Characterization of nuclear materials by total reflection X-ray fluorescence spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Nuclear energy is one of the available energy options for long term energy security of world. In order to produce electricity using this mode of energy generation in an efficient and safe manner, it is necessary that the materials used for such energy generation comply with the specifications assigned. The major and trace composition of these materials is an important specification for their quality control. Different analytical techniques are used for such quality control. Total reflection X-ray fluorescence (TXRF) is a comparatively new technique having several features well suited for trace and major element determinations in nuclear materials. However, this technique has not been used so far extensively for characterization of nuclear materials. The present paper gives a brief introduction of TXRF, its suitability for nuclear material characterization and some details of the TXRF studies made in our laboratory for the characterization of nuclear materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. IAEA report No. IAEA-TECDOC-1545 (2006) Characterization and testing of materials for nuclear reactors In: proceedings of a technical meeting held in Vienna, May 29–June 2, 2006

  2. Sinha RK (2011) Advanced nuclear reactor systems: an indian perspective. Energy Procedia 7:34–50

    Article  Google Scholar 

  3. Sinha RK, Kakodkar A (2006) Design and development of the AHWR—the Indian thorium fuelled innovative nuclear reactor. Nucl Eng Design 236:683–700

    Article  CAS  Google Scholar 

  4. Kumar A, Kannan U, Srivenkatesan R (2002) Sensitivity analysis for AHWR fuel cluster parameters using different WIMS libraries. Ann Nucl Energy 29:1967–1975

    Article  CAS  Google Scholar 

  5. Kamath HS (2011) Recycle fuel fabrication for closed fuel cycle in India. Energy Procedia 7:110–119

    Article  Google Scholar 

  6. Ramaniah MV (1982) Analytical chemistry of fast reactor fuels: a review. Pure Appl Chem 4:889–902

    Google Scholar 

  7. Malhotra RK, Satyanarayana K (1999) Estimation of trace impurities in nuclear grade uranium. Talanta 50:601–608

    Article  CAS  Google Scholar 

  8. Van Grieken RE, Markowicz AA (1993) Handbook of X-ray spectrometry, 2nd edn. Marcel Dekker Inc, New York

    Google Scholar 

  9. Bertin EA (1984) Principle and practice of X-ray spectrometric analysis, 2nd edn. Plenum, New York

    Google Scholar 

  10. Klockenkämper R (1996) Total reflection X-ray fluorescence analysis, chemical analysis, vol 140. Wiley, New York

    Google Scholar 

  11. Streli C (2000) Development of total reflection X-ray fluorescence analysis at Atominstitute of Austrian Universities. X-ray Spectrom 29:203–211

    Article  CAS  Google Scholar 

  12. Wobrauschek P (2007) Total reflection X-ray fluorescence analysis: a review. X-ray Spectrom 36:289–300

    Article  CAS  Google Scholar 

  13. Schwenke H, Knoth J, Weisbrod U (1991) Current work on total reflection X-ray fluorescence spectrometry at the GKSS research centre. X-ray Spectrom 20:277–281

    Article  CAS  Google Scholar 

  14. Haarich M, Knöchel A, Salow H (1989) Einsatz der totalreflexions-röntgenfluoreszenzanalyse in der analytik von nuklearen wiederaufarbeitungsanlagen. Spectrochim Acta Part B 44:543–549

    Article  Google Scholar 

  15. Simabuco SM, Vázquez C, Boeykens S, Barroso RC (2002) Total reflection by synchrotron radiation: trace determination in nuclear materials. X-ray Spectrom 31:167–172

    Article  CAS  Google Scholar 

  16. Pepponi G, Wobrauschek P, Hegedüs F, Streli C, Zöger N, Jokubonis C, Falkenberg G, Grimmer H (2001) Synchrotron radiation total reflection X-ray fluorescence and energy dispersive X-ray fluorescence analysis on AP1™ films applied to the analysis of trace elements in metal alloys for the construction of nuclear reactor core components: a comparison. Spectrochim Acta Part B 56:2063–2071

    Article  Google Scholar 

  17. Misra NL (2011) Total reflection X-ray fluorescence and energy-dispersive X-ray fluorescence characterizations of nuclear materials. Pramana 76:201–212

    Article  CAS  Google Scholar 

  18. Misra NL, Singh Mudher KD, Adya VC, Rajeshwari B, Venugopal V (2005) Determination of trace elements in uranium oxide by total reflection X-ray fluorescence spectrometry. Spectrochim Acta Part B 60:834–840

    Article  Google Scholar 

  19. Misra NL, Dhara S, Adya VC, Godbole SV, Singh Mudher KD, Aggarwal SK (2008) Trace element determination in thorium oxide using total reflection X-ray fluorescence spectrometry. Spectrochim Acta Part B 63:81–85

    Article  Google Scholar 

  20. Misra NL, Dhara S, Óvári M, Záray Gy, Aggarwal SK, Varga I (2010) Determination of low atomic number elements at trace levels in uranium matrix using vacuum chamber total reflection X-ray fluorescence. Spectrochim Acta Part B 65:457–460

    Article  Google Scholar 

  21. Dhara S, Misra NL, Aggarwal SK (2008) Determination of sulphur in uranium matrix by total reflection X-ray fluorescence spectrometry. Spectrochim Acta Part B 63:1395–1398

    Article  Google Scholar 

  22. Misra NL, Thakur UK, Shah D, Sawant RM, Ramakumar KL, Aggarwal SK (2012) A total reflection X-ray fluorescence method for the determination of chlorine at trace levels in nuclear materials without sample dissolution. X-ray Spectrom 41:316–320

    Article  Google Scholar 

  23. Dhara S, Misra NL, Singh Mudher KD, Aggarwal SK (2007) Bulk determination of uranium and thorium in presence of each other by total reflection X-ray fluorescence spectrometry. Spectrochim Acta Part B 62:82–85

    Google Scholar 

  24. Meirer F, Singh A, Pianetta P, Pepponi G, Meirer F, Streli C, Homma T (2010) Synchrotron radiation-induced total reflection X-ray fluorescence analysis. TrAC Trend Anal Chem 29:479–496

    Article  CAS  Google Scholar 

  25. Iijima Y, Miyoshi K (1999) Recent advances in the application of total reflection X-ray photoelectron spectroscopy in the semiconductor industry. X-ray Spectrom 28:427–432

    Article  CAS  Google Scholar 

  26. Streli C, Wobrauschek P, Bauer V, Kregsamer P, Görgl R, Pianetta P, Ryon R, Pahlke S, Fabry L (1997) Total reflection X-ray fluorescence analysis of light elements with synchrotron radiation and special X-ray tubes. Spectrochim Acta Part B 52:861–872

    Article  Google Scholar 

  27. Osán J, Meirer F, Groma V, Török S, Ingerle D, Streli C, Pepponi G (2010) Speciation of copper and zinc in size-fractionated atmospheric particulate matter using total reflection mode X-ray absorption near-edge structure spectrometry. Spectrochim Acta Part B 65:1008–1013

    Article  Google Scholar 

  28. Kawai J, Hayakawa S, Kitajima Y, Gohshi Y (1999) X-ray absorption fine structure (XAFS) of Si wafer measured using total reflection X-rays. Spectrochim Acta Part B 54:215–222

    Article  Google Scholar 

  29. Kawai J (2010) Total reflection X-ray photoelectron spectroscopy: a review. J Electron Spectrosc Relat Phenom 178–179:268–272

    Article  Google Scholar 

  30. Wobrauschek P, Streli C, Kregsamer P, Meirer F, Jokubonis C, Markowicz A, Wegrzynek D, Chinea-Cano E (2008) Total reflection X-ray fluorescence attachment module modified for analysis in vacuum. Spectrochim Acta Part B 63:1404–1407

    Article  Google Scholar 

  31. Kunimura S, Watanabe D, Kawai J (2009) Optimization of a glancing angle for simultaneous trace elemental analysis by using a portable total reflection X-ray fluorescence spectrometer. Spectrochim Acta Part B 64:288–290

    Article  Google Scholar 

  32. Sparks CM, Fittschen UEA, Havrilla GJ (2010) Picoliter solution deposition for total reflection X-ray fluorescence analysis of semiconductor samples. Spectrochim Acta Part B 65:805–811

    Article  Google Scholar 

  33. Streli C (2006) Recent Advances in TXRF. Appl Spectrosc Rev 41:473–489

    Article  CAS  Google Scholar 

  34. Tsuji K, Kawamata M, Nishida Y, Nakano K, Ken-ichi S (2006) Micro total reflection X-ray fluorescence (μ-TXRF) analysis. X-ray Spectrom 35:375–378

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I express my sincere thanks to Dr. S. K. Aggarwal, Associate Director (R), Radiochemistry and Isotope Group, Dr. K. L. Ramakumar, Director Radiochemistry and Isotope Group and Dr. S. Kannan, Head Structural Studies section for their keen interest in the work. In addition, I am thankful to all co-authors of our different TXRF publications specially Dr. (Mrs.) Sangita Dhara Lenka, Dr. K. D. Singh Mudher and Dr. V. Venugopal. I gratefully acknowledge the helpful discussions with Prof. Jun Kawai (Kyoto University, Japan), Prof. Peter Wobrauschek, Prof. Christina Streli (Atominstitut, Vienna, Austria) and Prof. Imre Varga (Loránd Eötvös University, Budapest) from time to time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, N.L. Characterization of nuclear materials by total reflection X-ray fluorescence spectrometry. J Radioanal Nucl Chem 300, 137–145 (2014). https://doi.org/10.1007/s10967-014-2972-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-2972-x

Keywords

Navigation