Skip to main content
Log in

N,N-Dialkyl amides as extractants for spent fuel reprocessing: an overview

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Reprocessing of spent nuclear fuel is vital for the long-term global nuclear power growth and is the major motivation for developing novel separation schemes. Conventionally, PUREX and THOREX processes have been proposed for the reprocessing of U and Th based spent fuels employing tri-n-butyl phosphate (TBP) as extractant. However, based on the experiences gained over last five–six decades on the reprocessing of spent fuels, some major drawbacks of TBP have been identified. Evaluation of alternative extractants is, therefore, desirable which can overcome at least some of these problems. Extensive studies have been carried out on the evaluation of N,N-dialkyl amides as extractants in the back-end of the nuclear fuel cycle for addressing the issues related to the reprocessing of U and Th based spent fuels. Under advanced fuel cycle scenario, efforts are also being made by countries with a developed nuclear technological base to provide safe nuclear power to other countries and to minimize proliferation concerns worldwide. This paper presents an overview of studies carried out in our laboratory on different aspects of reprocessing of U and Th based spent fuels employing N,N-dialkyl amides as extractants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schulz WW, Burger LL, Navratil JD, Bender KP (eds) (1990) Science and technology of tributyl phosphate, vol III. CRC Press Inc., Boca Raton

    Google Scholar 

  2. Sinha RK, Kakodkar A (2006) Nucl Eng Design 236:683–700

    Article  CAS  Google Scholar 

  3. Vandegrift GF, Regalbuto MC, Aase S, Bakel A, Battisti TJ, Bowers, D, Byrnes JP, Clark MA, Emery JW, Falkenberg JR, Gelis AV, Pereira C, Hafenrichter L, Tsai Y, Quigley KJ, Vander Pol MH (2004) Designing and demonstration of the UREX+ process using spent nuclear fuel. In: Advances for future nuclear fuel cycles international conference, ATATLANTE 2004, Nimes, June 21–24

  4. Manchanda VK, Pathak PN (2004) Sep Purif Technol 35:85–103

    Article  CAS  Google Scholar 

  5. Miguirditchian M, Sorel C, Camès B, Bisel I, Baron P (2008) In: Proceedings of international solvent extraction conference, ISEC-2008, Tucson, p 721

  6. Aneheim E, Ekberg C, Fermvik A, Foreman MStJ, Retegan T, Skarnemark G (2010) Solv Extr Ion Exch 28:437–458

    Article  CAS  Google Scholar 

  7. Aneheim E, Ekberg C, Fermvik A, Foreman MStJ, Grűner B, Hájková Z, Kvičalová M (2010) Solv Extr Ion Exch 29:157–175

    Article  Google Scholar 

  8. Marie C, Miguirditchian M, Guillaneux D, Bisson J, Pipelier M, Dubreuil D (2011) Solv Extr Ion Exch 29:292–315

    Article  CAS  Google Scholar 

  9. Sasaki Y, Suzuki S, Tachimori S, Kimura T (2003) In: The proceedings of global 2003, pp 1266–1269

  10. Baron P, Dinh B, Masson M, Drain F, Emin J. (2007) World International Patent Organization, Patent No. WO/2007/135178, Nov 29, 2007

  11. Zabunoğlu OH, Özdemir L (2005) Ann Nucl Energy 32:137–149

    Article  Google Scholar 

  12. Zabunoğlu OH, Özdemir L (2005) Ann Nucl Energy 32:151–162

    Article  Google Scholar 

  13. Pereira C, Leite EM (1998) Ann Nucl Energy 25:937–962

    Article  CAS  Google Scholar 

  14. Pobereskin M, Kok KD, Madia WJ (1978) Nucl Technol 41:149–167

    CAS  Google Scholar 

  15. Sunanta P, Reiner P (1980) Nucl Technol 51:7–12

    Google Scholar 

  16. Statton MA, Thompson MC (1979) USDOE Report, DP-1505

  17. Pathak PN, Kanekar AS, Prabhu DR, Manchanda VK (2009) Sep Sci Technol 44:3650–3663

    Article  CAS  Google Scholar 

  18. Gasparini GM, Grossi G (1986) Solv Extr Ion Exch 4:1233–1271

    Article  CAS  Google Scholar 

  19. Pathak PN, Prabhu DR, Kanekar AS, Manchanda VK (2010) Mater Sci Eng 9:012082

    Google Scholar 

  20. Pathak PN, Prabhu DR, Kumari N, Kanekar AS, Manchanda VK (2012) Desalination Water Treat 38:40–45

    Article  CAS  Google Scholar 

  21. Pathak PN, Prabhu DR, Bindu M, Tripathi SC, Manchanda VK (2011) J Radioanal Nucl Chem 288:137–142

    Article  CAS  Google Scholar 

  22. Kumari N, Pathak PN, Prabhu DR, Manchanda VK (2012) Sep Sci Technol 47:1492–1497

    Article  CAS  Google Scholar 

  23. Mathur JN, Ruikar PB, Balarama Krishna MV, Mural MS, Nagar MS, Iyer RH (1996) Radiochim Acta 73:199–206

    CAS  Google Scholar 

  24. Kumari N, Pathak PN, Prabhu DR, Manchanda VK (2011) Sep Sci Technol 46:79–86

    Article  CAS  Google Scholar 

  25. Parikh KJ, Pathak PN, Misra SK, Tripathi SC, Dakshinamoorthy A, Manchanda VK (2009) Solv Extr Ion Exch 27:244–257

    Article  CAS  Google Scholar 

  26. Pathak PN, Kanekar AS, Prabhu DR, Manchanda VK (2009) Solv Extr Ion Exch 27:683–694

    Article  CAS  Google Scholar 

  27. Llyod MH, Fellows RL (1985) Report ORNL/TM-9565

  28. Webster DS, Williamson CL, Ward JF (1962) USAEC Report DP-370

  29. Kumari N, Prabhu DR, Pathak PN (2013) Sep Sci Technol. doi:10.1080/01496395.2013.807835

    Google Scholar 

  30. Kant S (2005) Int J Nucl Energy Sci Technol 1:204–212

    CAS  Google Scholar 

  31. Kumari N, Pathak PN, Prabhu DR, Manchanda VK (2012) Desalination Water Treat 38:159–165

    Article  CAS  Google Scholar 

  32. Dhami PS, Jagasia P, Panja S, Achuthan PV, Tripathi SC, Munshi SK, Dey PK (2010) Sep Sci Technol 45:1147–1157

    Article  CAS  Google Scholar 

  33. Dhami PS, Jagasia P, Panja S, Naik PW, Achuthan PV, Tripathi SC, Munshi SK, Dey PK (2012) Desalination Water Treat 38:184–198

    Article  Google Scholar 

  34. Kumari N, Prabhu DR, Kanekar AS, Pathak PN (2012) Ind Eng Chem Res 51:14535–14542

    Article  CAS  Google Scholar 

  35. Mukerji S, Krishnani PD, Srivenkatesan R (2006) In: Baldev R, Vasudeva Rao PR (eds) Nuclear fuel cycle technologies: closing the fuel cycle. BRNS Publication, Mumbai, p 395

    Google Scholar 

  36. Verma PK, Kumari N, Prabhu DR, Pathak PN (2013) Sep Sci Technol 48:626–633

    Article  CAS  Google Scholar 

  37. Vasudeva Rao PR, Kolarik Z (1996) Solv Ext Ion Exch 14:955–993

    Article  Google Scholar 

  38. Kumari N, Prabhu DR, Pathak PN, Kanekar AS, Manchanda VK (2011) J Radioanal Nucl Chem 289:835–843

    Article  CAS  Google Scholar 

  39. Borkowski M, Chiarizia R, Jensen MP, Ferraro JR, Thiyagarajan P, Littrell KC (2003) Sep Sci Technol 38:3333–3351

    Article  CAS  Google Scholar 

  40. Chiarizia R, Nash KL, Jensen MP, Thiyagarajan P, Littrell KC (2003) Langmuir 19:9592–9599

    Article  CAS  Google Scholar 

  41. Nave S, Mandin C, Martinet L, Berthon L, Testard F, Madic C, Zemb Th (2004) Phys Chem Chem Phys 6:799–808

    Article  CAS  Google Scholar 

  42. Motokawa R, Suzuki S, Ogawa H, Antonio M, Yaita T (2012) J Phys Chem B 116:1319–1327

    Article  CAS  Google Scholar 

  43. Chiarizia R, Jensen MP, Rickert PG, Kolarik Z, Borkowski M, Thiyagarajan P (2004) Langmuir 20:10798–10808

    Article  CAS  Google Scholar 

  44. Plaue J, Gelis A, Czerwinski K, Thiyagarajan P, Chiarizia R (2006) Solv Extr Ion Exch 24:283–298

    Article  CAS  Google Scholar 

  45. Plaue J, Gelis A, Czerwinski K (2006) Sep Sci Technol 41:2065–2074

    Article  CAS  Google Scholar 

  46. Kumari N, Pathak PN (2013) J Ind Eng Chem. doi:10.1016/j.jiec.2013.07.022

    Google Scholar 

  47. Verma PK, Pathak PN, Mohapatra PK, Aswal VK, Sadhu B, Sundararajan M (2013) J Phys Chem B 117:9821–9828

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author thanks Mr. D. R. Prabhu, Ms. Neelam Kumari, Mr. Avinash Kanekar, Mr. P. K. Verma and Prof. V. K. Manchanda for their valuable contributions in this work. He acknowledges the kind support of Dr. P. K. Mohapatra, Head, Actinide Chemistry Section, Radiochemistry Division. He sincerely thanks Dr. A. Goswami, Head, Radiochemistry Division for his keen interest and constant encouragement for these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Pathak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathak, P.N. N,N-Dialkyl amides as extractants for spent fuel reprocessing: an overview. J Radioanal Nucl Chem 300, 7–15 (2014). https://doi.org/10.1007/s10967-014-2961-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-2961-0

Keywords

Navigation