Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 299, Issue 3, pp 1693–1700 | Cite as

Characteristics of an oxa-diamide–HNO3 extractant in the supercritical fluid extraction of uranium

  • Joanna S. Wang
  • Weisheng Liao
  • Chien M. Wai
  • JyaJyun Yu
  • KongHwa ChiuEmail author
Article

Abstract

An extractant is required in the recovery process to drive the uranium to a stage that enables it to be extracted using the extraction solvent. This paper proposes the composition of a composite extractant, N,N,N′,N′-tetrabutyl-3-oxapentane-diamide–HNO3 (TBODA–HNO3) as an extractant, to successfully achieve the objective using supercritical carbon dioxide (sc-CO2). The composite TBODA–HNO3 extractant has a chemical composition of TBODA(HNO3)1.0(H2O)1.5. The U(IV) in the UO2 containing solid phase is directly oxidized to U(VI) in the form of \( {\rm UO}_{2}^{2 + } \) in sc-CO2, which contains a CO2-soluble TBODA–HNO3 extractant at 200 atm and 50 °C. The resulting \( {\rm UO}_{2}^{2 + } \)/TBODA complex can be consequently extracted using acetone-modified sc-CO2. The chemical composition of the \( {\rm UO}_{2}^{2 + } \)/TBODA complex, which can be extracted by nonpolar sc-CO2, is proposed in the form of an ion pair: [UO2(TBODA)2]2+–2(\( {\rm NO}_{3}^{ - } \)).

Keywords

Supercritical fluid extraction Uranium Extractant 

Notes

Acknowledgments

This work was partially supported by the National Science Council, Taiwan, ROC (NSC 98-2811-M-259-004).

References

  1. 1.
    Wilson PD (ed) (1996) Nuclear fuel cycle, from ore to waste. Oxford Science Publications, Oxford, p 381Google Scholar
  2. 2.
    Manchanda VK, Panthak PN (2004) Sep Purif Technol 35:85CrossRefGoogle Scholar
  3. 3.
    Lin Y, Smart NG, Wai CM (1995) Environ Sci Technol 29:2706CrossRefGoogle Scholar
  4. 4.
    Carrott MJ, Waller BF, Smart NG, Wai CM (1998) Chem Commun 3:373CrossRefGoogle Scholar
  5. 5.
    Sasaki T, Meguro Y, Yoshida Z (1998) Talanta 46:689CrossRefGoogle Scholar
  6. 6.
    Tomioka O, Meguro Y, Enokida Y, Yoshida Z, Yamamoto I (2001) J Nucl Sci Technol 38:1097CrossRefGoogle Scholar
  7. 7.
    Samsonov MD, Wai CM, Lee SC, Kulyako Y, Smart NG (2001) Chem Commun 18:1868CrossRefGoogle Scholar
  8. 8.
    Enokida Y, Tomioka O, Lee S, Rustenholtz A, Wai CM (2003) Ind Eng Chem Res 42:5037CrossRefGoogle Scholar
  9. 9.
    Tian G, Zhang P, Wang J, Rao JL (2005) Solvent Extr Ion Exch 23:631CrossRefGoogle Scholar
  10. 10.
    Ansari SA, Pathak PN, Manchanda VK, Husain M, Prasad AK, Parmar VS (2005) Solvent Extr Ion Exch 23:463CrossRefGoogle Scholar
  11. 11.
    Ansari SA, Pathak PN, Husain M, Prasad AK, Parmar VS, Manchanda VK (2006) Radiochim Acta 94:307CrossRefGoogle Scholar
  12. 12.
    Chen J, Wang SW (2007) J Radioanal Nucl Chem 273:59CrossRefGoogle Scholar
  13. 13.
    Mowafy EA, Aly HF (2007) Solvent Extr Ion Exch 25:205CrossRefGoogle Scholar
  14. 14.
    Shaibu BS, Reddy MLP, Murali MS, Manchanda VK (2007) Radiochim Acta 95:159CrossRefGoogle Scholar
  15. 15.
    Shen Y, Tan X, Wang L, Wu W (2011) Sep Purif Technol 78:298CrossRefGoogle Scholar
  16. 16.
    Koh M, Yoo J, Park Y, Bae D, Park K, Kim H, Kim HD (2006) Ind Eng Chem Res 45:5308CrossRefGoogle Scholar
  17. 17.
    Zhang P, Cheng J, Li C, Tian G (2003) Chem J Internet 5:52Google Scholar
  18. 18.
    Tian G, Liao W, Wai CM, Rao L (2008) Ind Eng Chem Res 47:2803CrossRefGoogle Scholar
  19. 19.
    Tian G, Rao L, Teat SJ, Liu G (2009) Chem Eur J 15:4172CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Joanna S. Wang
    • 1
  • Weisheng Liao
    • 1
    • 2
  • Chien M. Wai
    • 1
  • JyaJyun Yu
    • 3
  • KongHwa Chiu
    • 2
    Email author
  1. 1.Department of ChemistryUniversity of IdahoMoscowUSA
  2. 2.Department of ChemistryNational Dong Hwa UniversityHualienTaiwan, ROC
  3. 3.Department of Environmental Engineering and ScienceFeng Chia UniversityTaichungTaiwan, ROC

Personalised recommendations